Câu hỏi:

22/04/2022 368

Cho (H)  là hình phẳng giới hạn bởi parabol y=3x2  và nửa đường tròn có phương trình y=4-x2  với -2x2  (phần tô đậm trong hình vẽ). Diện tích của (H)  bằng

Cho   là hình phẳng giới hạn bởi parabol   và nửa đường tròn có phương trình   với   (phần tô đậm trong hình vẽ). Diện tích của   bằng (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương trình hoành độ giao điểm: 3x2=4-x2  , Đk: -2x2

3x4+x2-4=0x2=1x=±1.

Hình (H)  giới hạn bởi: (P): y=3x2(C): y=4-X6x=-1; x=1   có diện tích là:

S=-11(4-x2-3x2)dx=-114-x2dx--113x2dx.

* Ta có: I2=33x3=233 .

* Xét I1=-114-x2dx :Đặt x=2sint,t-ππ; π2; dx=2costdt  .

Khi x=-1t=-π6  và x=1t=π6 .

Ta có: I1=-π6π64(1-sin2x)2costdt=4-π6π6cos2tdt  (Do cost0  khi t-π2; π2 )

  =2-π6π6(1+cos2t)dt=2t+12sin2t=2(π3+32).

Vậy S=2(π3+32)-233=2π+33 .

Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hình dáng đồ thị thể hiện a>0 . Loại đáp án A, D.

Thấy đồ thị cắt trục hoành tại điểm x=1  nên thay x=1y=0  vào hai đáp án B và C, chỉ có B thỏa mãn.

Chọn B.

Lời giải

Gọi A  là biến cố: “Có ít nhất một con xúc sắc xuất hiện mặt một chấm”.

Do mỗi xúc sắc có thể xảy ra 6  trường hợp nên số kết quả có thể xảy ra là Gieo ngẫu nhiên hai con xúc sắc cân đối và đồng chất. Xác suất của biến cố “ Có ít nhất một con xúc sắc xuất hiện mặt một chấm” là (ảnh 1) .

Tìm số kết quả thuận lợi cho A .

Ta có các trường hợp sau:

       Gieo ngẫu nhiên hai con xúc sắc cân đối và đồng chất. Xác suất của biến cố “ Có ít nhất một con xúc sắc xuất hiện mặt một chấm” là (ảnh 2)  

.

Đáp án A.

Câu 3

Tích phân I=122x.dx  có giá trị là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay