Câu hỏi:

22/04/2022 904 Lưu

Cho tam giác ABC đều cạnh a. Quay tam giác ABC quanh đường cao AH ta được hình nón tròn xoay. Diện tích mặt cầu nội tiếp hình nón bằng

A. πa22

B. πa23

C. πa2

D. 2πa2

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án B

Mặt cầu nội tiếp hình nón có 1 đường tròn lớn nội tiếp tam giá đều ABC (cạnh a).

Nên mặt cầu đó có bán kính r=13.a32=a36

Vậy diện tích mặt cầu cần tìm là V=4πr2=4πa362=πa23

Cho tam giác ABC đều cạnh a. Quay tam giác ABC quanh đường cao AH ta được hình nón tròn xoay. Diện tích mặt cầu nội tiếp hình nón bằng (ảnh 1)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

Số các số tự nhiên có 4 chữ số đôi một khác nhau được lập từ 7 chữ số 1, 2, 3, 4, 5, 6, 7 là  A74 số.

Lời giải

Đáp án A

 α1 có VTPT n1=0;  1;  2 , α2  có VTPT n2=1;  1;  5 ,  α3 có VTPT n3=1;  1;  1 .

Chọn M1;  4;  0  thuộc giao tuyến của hai mặt phẳng α1 ,  α2

Gọi d là giao tuyến của hai mặt phẳng α1  α2  khi đó d đi qua điểm  M1;  4;  0 và có VTCP u1=n1,n2=7;  2;  1

 Pđi qua giao tuyến của hai mặt phẳng α1 , α2  và vuông góc với α3

Mặt phẳng P   đi qua M1;  4;  0  và nhận n=u1,  n3=3;  6;  9  làm vectơ pháp tuyến có phương trình P:3x1+6y49z0=0x+2y3z9=0

Câu 3

A. Đồ thị của hàm số y=2x  y=log2x  đối xứng với nhau qua đường thẳng y=x

B. Đồ thị của hai hàm số y=ex  y=lnx  đối xứng với nhau qua đuường thẳng y=x

C. Đồ thị của hai hàm số y=2x  và y=12x  đối xứng với nhau qua trục hoành

D. Đồ thị của hai hàm số y=log2x  y=log21x  đối xứng với nhau qua trục tung

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. ;  1

B. 2;  +

C. 1;  2

D. ;  12;  +

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP