Câu hỏi:
23/04/2022 3,350Cho hàm số và f(x) trong đó đồ thị hàm số y = f(x) như hình bên. Hỏi có bao nhiêu số nguyên m để phương trình có đúng 3 nghiệm phân biệt?
Quảng cáo
Trả lời:
Phương pháp:
- Lập BBT của hàm số xác định sự tương ứng nghiệm .
- Đặt t = u(x). Biện luận để phương trình f(t) = m có đúng 3 nghiệm x phân biệt thì cần có nghiệm t thỏa mãn điều kiện gì?
- Dựa vào đồ thị hàm số tìm m để phương trình có nghiệm t thỏa mãn điều kiện vừa biện luận ở trên.
Cách giải:
Xét hàm số ta có
Ta có BBT:
Đặt t = u(x), phương trình
Do đó để phương trình f(t) = m có đúng 3 nghiệm x phân biệt thì cần phải có 2 nghiệm t phân biệt thỏa mãn
Dựa vào đồ thị hàm số f(x) ta thấy
Mà
Vậy có 3 giá trị của m thỏa mãn yêu cầu bài toán.
Chọn B.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương pháp:
- Số nghiệm của phương trình f(x) = m là số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m.
- Tìm nghiệm từ đó tìm nghiệm x.
Cách giải:
Ta có: số nghiệm của phương trình là số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = -1
Dựa vào đồ thị ta thấy
Vậy phương trình có 4 nghiệm.
Chọn C.
Chú ý khi giải: Đề bài yêu cầu tìm nghiệm của phương trình là tìm nghiệm x chứa không tìm nghiệm
Lời giải
Phương pháp:
Sử dụng công thức tính nguyên hàm:
Cách giải:
Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)
45 bài tập Xác suất có lời giải
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 11)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận