Câu hỏi:

25/04/2022 11,400 Lưu

Có bao nhiêu số nguyên a để phương trình z2a3z+a2+a=0 có hai nghiệm phức z1,z2 thỏa mãn z1+z2=z1z2.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp:

- Tính Δ của phương trình z2a3z+a2+a=0, giải bất phương trình Δ<0.

- Phương trình bậc hai có 2 nghiệm phức thì hai nghiệm đó là số phức liên hợp của nhau, đặt z1=x+yiz2=xyi

- Giải phương trình z1+z2=z1z2 tìm mối quan hệ giữa x và y.

- Giải phương trình z2a3z+a2+a=0 theo a,Δ tìm z1,z2. Với mỗi trường hợp trên giải phương trình chứa căn tìm

Cách giải:

Xét phương trình z2a3z+a2+a=0 ta có:

Δ=a324a2+a=3a210a+9.

Để phương trình có 2 nghiệm phức thì 3a210a+9<0a>5+2133a<52133*.

z1,z2 là hai nghiệm phức của phương trình z2a3z+a2+a=0 nên chúng là 2 số phức liên hợp. Do đó đặt 

Theo bài ra ta có:

z1+z2=z1z2

|x + yi + x-yi|=|x + yi - x+yi|

2x=2yi

x=yi

x=y

x=yx=y

Ta có: z2a3z+a2+a=0z1=a3+Δi2=a32+Δ2iz1=a3Δi2=a32Δ2i

TH1: x=ya3=Δa3a32=3a2+10a9

a32a2+16a180a=1a=9ktm.

TH2: x=y3a=Δa3a32=3a2+10a9

 Hai giá trị này của a thỏa mãn điều kiện (*).

Vậy có 2 số nguyên a thỏa mãn yêu cầu bài toán.

Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Phương pháp:

- Số nghiệm của phương trình f(x) = m là số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m.

- Tìm nghiệm x2, từ đó tìm nghiệm x.

Cách giải:

Ta có: fx2+1=0fx2=1, số nghiệm của phương trình là số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = -1

Cho hàm số bậc ba y = f(x) có đồ thị như hình bên. Phương trình  (ảnh 2)

Dựa vào đồ thị ta thấy fx2=1x2=a<0Vô nghimx2=b>0x2=c>0x=±bx=±c.

Vậy phương trình fx2+1=0 có 4 nghiệm.

Chọn C.

Chú ý khi giải: Đề bài yêu cầu tìm nghiệm của phương trình fx2+1=0 là tìm nghiệm x chứa không tìm nghiệm x2.

Câu 2

Lời giải

Phương pháp:

Sử dụng công thức tính nguyên hàm: amx+ndx=amx+nmlna+C.

Cách giải:

fxdx=32x1dx=32x1ln3+C=9x6ln3+C.

Chọn C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP