Câu hỏi:
29/04/2022 4,841Cho \(x,y,z\) là ba số dương lập thành cấp số nhân; còn \({\log _a}x;{\log _{\sqrt a }}y;{\log _{\sqrt[3]{a}}}z\) lập thành cấp số cộng. Tính giá trị của biểu thức \(Q = \frac{{2017x}}{y} + \frac{{2y}}{z} + \frac{z}{x}.\)
Quảng cáo
Trả lời:
Đáp án C.
Theo bài ra, \(x,y,z\) là ba số dương lập thành cấp số nhận và \({\log _a}x;{\log _{\sqrt a }}y;{\log _{\sqrt[3]{a}}}z\) lập thành cấp số cộng nên ta có: \(\left\{ \begin{array}{l}xz = {y^2}\\{\log _a}x + {\log _{\sqrt[3]{a}}}z = 2{\log _{\sqrt a }}y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x.z = {y^2}\\{\log _a}x + 3{\log _a}z + 4{\log _a}y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x.z = {y^2}\\{\log _a}x{z^3} = {\log _a}{y^4}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}xz = {y^2}\\x{z^3} = {y^4}\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x.z = {y^2}\\{y^2}{z^2} = {y^4}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x.y = {y^2}\\z = y\end{array} \right. \Leftrightarrow x = y = z.\)
Do đó: \(Q = \frac{{2017x}}{y} + \frac{{2y}}{z} + \frac{z}{x} = \frac{{2017x}}{x} + \frac{{2x}}{x} + \frac{x}{x} = 2017 + 2 + 1 = 2020.\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án D

Ta có: \(SA \bot \left( {ABCD} \right) \supset AC \Rightarrow SA \bot AC \Rightarrow \left( {SC,\left( {ABCD} \right)} \right) = \widehat {SCA}.\)
Xét tam giác vuông \(SAC,\) ta có: \(\tan \widehat {SCA} = \frac{{SA}}{{AC}} = \frac{{a\sqrt 2 }}{{a\sqrt 2 }} = 1 \Rightarrow \widehat {SCA} = {45^0}.\)
Lời giải
Đáp án C.
Ta có \(y' = - 2f'\left( {1 - 2x} \right).\)
Hàm số \(y = f\left( {1 - 2x} \right)\) nghịch biến khi và chỉ khi \(y' = - 2f'\left( {1 - 2x} \right) < 0 \Leftrightarrow f'\left( {1 - 2x} \right) >0.\)</>
Từ bảng xét dấu đã cho, ta có \(f'\left( {1 - 2x} \right) >0 \Leftrightarrow \left[ \begin{array}{l} - 3 < 1 - 2x < - 1\\1 - 2x >1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}1 < x < 2\\x < 0\end{array} \right.\)
Do đó, hàm số \(y = f\left( {1 - 2x} \right)\) nghịch biến trên các khoảng \(\left( { - \infty ;0} \right)\)và \(\left( {1;2} \right).\)
Vậy, hàm số \(y = f\left( {1 - 2x} \right)\) nghịch biến trên khoảng \(\left( { - 2;0} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.