Câu hỏi:

06/05/2022 2,816

Gọi V1,V2, lần lượt là thể tích của khối tứ diện đều và khối lập phương có chung mặt cầu

ngoại tiếp. Khi đó, V1V2 bằng 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp giải:

Bước 1: Lập tỉ lệ giữa cạnh của hình tứ diện đều và bán kính mặt cầu ngoại tiếp, tỉ lệ giữa cạnh hình lập phương và bán kính mặt cầu ngoại tiếp

Bước 2: Lập tỉ số về thể tích giữa tứ diện đều và mặt cầu ngoại tiếp, giữa hình lập phương và mặt cầu ngoại tiếp.

Bước 3: Tính V1V2

Giải chi tiết:

Bước 1: Gọi a là độ dài cạnh của tứ diện đều khi đó ta có: R=3a26a=263R 

Gọi b là độ dài hình lập phương, ta có: R=a2+a2+a22=b32b=2R3

Bước 2: Tỉ số cạnh của tứ diện đều và lập phương có cùng mặt cầu ngoại tiếp ab=263:23=26332=2

Bước 3: Tính V1V2

Thể tích tứ diện đều cạnh a là V1=a3212

Thể tích khối lập phương cạnh b là : V2=b3

Vậy tỉ lệ thể tích: V1V2=ab3212=22212=13

Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Phương pháp giải:

Bước 1: Kẻ AH vuông góc với SB. Chứng minh AH(SBC)

Bước 2: Tính AH

Giải chi tiết:

: Cho hình chóp S ABC  có SA   ABC , tam giác ABC vuông tại B , SA = BC = a , AC  2 a. Khoảng cách từ điểm A đến mặt phẳng (SBC) (ảnh 1)

 

Bước 1: Kẻ AH vuông góc với SB. Chứng minh AH=dA,SBC 

Kẻ AH vuông góc với SB.

Ta có:  

SAABCSABCBCABBCSAB=>BCAH 

 Lại có AHSB=>AHSBCAH=dA,SBC 

Bước 2: Tính AH

Xét tam giác vuông ABC có: AB=AC2BC2=a3 

Xét tam giác vuông SAB có:  1AH2=1SA2+1AB2=1a2+13a2=43a2=>AH=a32 

Chọn D

Câu 2

Lời giải

Chọn A

Phương pháp giải:

Bước 1: Gọi số cần tìm là abc¯ 

Tách các bộ số chia hết cho 3, chia 3 dư 1 và chia 3 dư 2.

Bước 2: Xét các trường hợp bộ số chia hết cho 3

+) a, b, c đều chia hết cho 3 a,​​b,​​c={3;6;9}

+) a,b,c1mod3a,​​b,​​c1;4;7 

+) a,b,c2mod3a,​​b,​​c2;5;8.

+) Trong 3 số a, b, c có 1 số chia hết cho 3, 1 số chia 3 dư 1, 1 số chia 3 dư 2.

Giải chi tiết:

Bước 1:

Gọi số cần tìm là abc¯

Từ các số bài cho ta chia thành 3 bộ số:

+ Bộ số chia hết cho 3 là: 3; 6; 9

+ Bộ số chia cho 3 dư 1 là: 1; 4; 7

+ Bộ số chia cho 3 dư 2 là: 2; 5; 8

Bước 2:

Xét các trường hợp sau:

+) a, b, c đều chia hết cho 3 a,​​b,​​c={3;6;9} Có 3! số.

+) a,b,c1mod3a,​​b,​​c1;4;7=> Có 3! số.

+) a,b,c2mod3a,​​b,​​c2;5;8  Có 3!số.

+) Trong 3 số a, b, c có 1 số chia hết cho 3, 1 số chia 3 dư 1, 1 số chia 3 dư 2  

3!.C31.C31.C31=162 

Vậy có 3.3!+162=180 số thỏa mãn đề bài.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP