Câu hỏi:

12/07/2024 43,139

Lập mệnh đề phủ định của mỗi mệnh đề sau và xét tính đúng sai của mỗi mệnh đề phủ định đó:

a) x , x2 ≠ 2x – 2;

b) x , x2 ≤ 2x – 1;

c) x,x+1x2 ;

d) x , x2 – x + 1 < 0.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Phủ định của mệnh đề “ x, x2 ≠ 2x – 2” là mệnh đề “x , x2 = 2x – 2”.

Mệnh đề phủ định trên là mệnh đề sai, thật vậy ta xét phương trình x2 = 2x – 2

x2 – 2x + 2 = 0

Đây là phương trình bậc hai với ∆' = (– 1)2 – 1 . 2 = – 1 < 0

Do đó phương trình vô nghiệm trên tập số thực.

Nghĩa là x2 ≠ 2x – 2 với mọi số thực x.

Vậy mệnh đề phủ định trên là mệnh đề sai. 

b) Phủ định của mệnh đề “x , x2 ≤ 2x – 1” là mệnh đề “x , x2 > 2x – 1”.

Mệnh đề phủ định này là mệnh đề đúng. Để chứng minh mệnh đề đúng, ta chỉ cần chỉ ra một giá trị cụ thể của x để nhận được mệnh đề đúng.

Thật vậy, chọn x = 2, ta thấy 22 = 4 và 2 . 2 – 1 = 4 – 1 = 3, vì 4 > 3 nên 22 > 2 . 2 – 1.

Vậy mệnh đề phủ định là mệnh đề đúng.

c) Phủ định của mệnh đề “x,x+1x2 ” là mệnh đề “x,x+1x<2 ”.

Mệnh đề phủ định trên là mệnh đề sai. Thật vậy, ta chỉ cần lấy bất kì một giá trị x để nhận được mệnh đề sai.

Chọn x = 4, ta thấy 4+14=4,25  > 2.

Vậy mệnh đề phủ định là mệnh đề sai.

d) Phủ định của mệnh đề “x , x2 – x + 1 < 0” là mệnh đề “x , x2 – x + 1 ≥ 0”.

Mệnh đề phủ định này là mệnh đề đúng.

Ta có: x2 – x + 1 = x22.x.12+122+34=x122+34>0      x .

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Lập mệnh đề phủ định của mỗi mệnh đề sau và nhận xét tính đúng sai của mệnh đề phủ định đó:

a) A: “  512 là một phân số”;

b) B: “Phương trình x2 + 3x + 2 = 0 có nghiệm”;

c) C: “22 + 23 = 22 + 3”;

d) D: “Số 2 025 chia hết cho 15”.

Xem đáp án » 12/07/2024 8,153

Câu 2:

Nêu ví dụ về mệnh đề chứa biến.

Xem đáp án » 12/07/2024 6,524

Câu 3:

Hãy phát biểu một định lí toán học ở dạng mệnh đề kéo theo P ⇒ Q.

Xem đáp án » 12/07/2024 5,424

Câu 4:

Cho tam giác ABC. Từ các mệnh đề:

P: “Tam giác ABC đều”, Q: “Tam giác ABC cân và có một góc bằng 60°”, hãy phát biểu hai mệnh đề P ⇒ Q và Q ⇒ P và xác định tính đúng sai của mỗi mệnh đề đó. Nếu cả hai mệnh đề trên đều đúng, hãy phát biểu mệnh đề tương đương.

Xem đáp án » 12/07/2024 5,135

Câu 5:

Cho tam giác ABC. Xét các mệnh đề:

P: “Tam giác ABC cân”;

Q: “Tam giác ABC có hai đường cao bằng nhau”.

Phát biểu mệnh đề P ⇔ Q bằng bốn cách.

Xem đáp án » 12/07/2024 4,543

Câu 6:

Dùng kí hiệu “ ” hoặc “ ” để viết các mệnh đề sau:

a) Có một số nguyên không chia hết cho chính nó;

b) Mọi số thực cộng với 0 đều bằng chính nó.

Xem đáp án » 12/07/2024 4,375
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua