Câu hỏi:

21/05/2022 2,407

Cho hai vecto cùng phương u=x;y v=kx;ky. Hãy kiểm tra công thức u.v=kx2+y2 theo từng trường hợp sau:

a) u=0;

b) u0 và k0;

c) u0 và k < 0.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Ta có: u=0x=0y=0

0 vuông góc với mọi vecto nên ta có: u.v=0

Ta lại có: kx2+y2=k02+02=0

u.v=kx2+y2

Vậy với u=0 công thức đã cho đúng.

b) Vì k ≥ 0 nên hai vecto u,v cùng hướng

u,v=00

Ta có: 

u.v=uvcosu,v=x2+y2.kx2+ky2.cosu,v=kx2+y2.cos00=kx2+y2.

Vậy với u0 k0 công thức đã cho đúng.

c) Vì k < 0 nên hai vecto u,v ngược hướng

u,v=1800

Ta có:

u.v=uvcosu,v=x2+y2.kx2+ky2.cosu,v=kx2+y2.cos1800

Vậy với u0 và k < 0 công thức đã cho đúng.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có: AB6;3AB=62+32=35;

AC6;3AC=62+32=35;

BC0;6BC=02+62=6;

Theo định lí cosin, ta có:

cosA=AB2+AC2BC22.AB.AC=35A^53,130;

Tam giác ABC có AB = AC nên tam giác ABC cân tại A

B^=C^=1800A^263,440.

Vậy AB=AC=35,BC=6,A^=53,130,B^=C^=63,440.

b) Gọi trực tâm H của tam giác ABC có tọa độ là H(x;y)

Khi đó, ta có: AHx+4;y1;BC0;6;BHx2;y4;AC6;3

Vì AHBCAH.BC=0x+4.0+y1.6=0y=1.

Vì BHACBH.AC=0x2.6+y4.3=0

x2.2+y4.1=02xy=0

Mà y = 1 2x1=0x=12.

Lời giải

a) Ta có: a.b=3.2+1.6=0a,b=900.

b)  Ta có: a.b=3.2+1.4=10

a=32+12=10,b=22+42=25

a.b=a.b.cosa,bcosa,b=a.ba.b=1010.25=12a,b=450.

c) Ta có: a.b=2.2+1.2=32

a=22+12=3,b=22+22=6

a.b=a.b.cosa,bcosa,b=a.ba.b=323.6=1a,b=1800.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay