Trên một bàn cờ có nhiều ô vuông, người ta đặt 7 hạt dẻ vào ô đầu tiên, sau đó đặt tiếp vào ô thứ hai số hạt nhiều hơn ô thứ nhất là 5, tiếp tục đặt vào ô thứ ba số hạt nhiều hơn ô thứ hai là 5,… và cứ thế tiếp tục đến ô thứ \(n\). Biết rằng để đặt hết số ô trên bàn cờ người ta phải sử dụng 25450 hạt. Hỏi bàn cờ đó có bao nhiêu ô?
Quảng cáo
Trả lời:
Phương pháp giải:
Tổng \(n\) số hạng đầu của một cấp số cộng là \({S_n} = \frac{{n\left( {{u_1} + {u_n}} \right)}}{2}\) hay \({S_n} = \frac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2}\).
Giải chi tiết:
Dễ thấy số hạt dẻ đặt vào từng ô tạo thành một cấp số cộng với \({u_1} = 7;\;d = 5.\)
Gọi bàn cờ đó có \(n\) ô \( \Rightarrow {S_n} = 25450 = \frac{{n\left[ {2.7 + \left( {n - 1} \right).5} \right]}}{2}\)
\[ \Leftrightarrow n\left( {5n + 9} \right) = 50900 \Leftrightarrow 5{n^2} + 9n - 50900 = 0 \Rightarrow n = 100\] (do \[n \in {N^*}\])
Vậy bàn cờ đó có 100 ô.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương pháp giải:
Suy luận, loại trừ phương án.
Giải chi tiết:
A loại vì các nước Đồng minh không thiết lập quan hệ ngoại giao với nước Việt Nam Dân chủ Cộng hòa trong những năm 1945 – 1946.
B chọn vì nhân dân ta đã giành được quyền làm chủ, bước đầu được hưởng quyền lợi do chính quyền cách mạng đưa đến nên rất phấn khởi, gắn bó với chế độ và quyết tâm bảo vệ chế độ dân chủ cộng hòa.
C loại vì Liên Xô công nhận và đặt quan hệ ngoại giao với ta năm 1950.
D loại vì Việt Nam nhận được sự ủng hộ và giúp đỡ của các nước xã hội chủ nghĩa từ năm 1950.
Lời giải
Phương pháp giải:
- Gọi \(E\) là trung điểm của \(AB\).
- Đánh giá GTNN của tích \(\overrightarrow {MA} .\overrightarrow {MB} \) đạt được dựa vào điểm \(E\).
Giải chi tiết:
Mặt cầu \(\left( S \right)\) có tâm \(I\left( { - 1;2;1} \right)\) và bán kính \(R = \frac{{\sqrt 6 }}{2}\).
Gọi \(E\) là trung điểm của \(AB\)\( \Rightarrow E\left( {1; - 2; - 1} \right)\) và \(AB = 6\sqrt 2 \).
Ta có:
Suy ra \(\overrightarrow {MA} .\overrightarrow {MB} \) đạt GTNN khi \(ME\) đạt GTNN.
Lại có: \(ME + MI \ge IE \Rightarrow ME + MI \ge IN + NE \Rightarrow ME \ge NE\)
\( \Rightarrow ME\) đạt GTNN khi \(M \equiv N\) với \(N = IE \cap \left( S \right)\)
Đường thẳng \(IE\) đi qua \(I\left( { - 1;2;1} \right)\) và nhận làm VTCP nên
\(N = IE \cap \left( S \right)\) nên \({\left( { - 1 + t} \right)^2} + {\left( {2 - 2t} \right)^2} + {\left( {1 - t} \right)^2} + 2\left( { - 1 + t} \right) - 4\left( {2 - 2t} \right) - 2\left( {1 - t} \right) + \frac{9}{2} = 0\)
\( \Leftrightarrow 6{\left( {t - 1} \right)^2} + 12\left( {t - 1} \right) + \frac{9}{2} = 0\)
\( \Rightarrow \left[ {\begin{array}{*{20}{l}}{N\left( { - \frac{1}{2};1;\frac{1}{2}} \right) \Rightarrow NE = \frac{{3\sqrt 6 }}{2}}\\{N\left( { - \frac{3}{2};3;\frac{3}{2}} \right) \Rightarrow NE = \frac{{5\sqrt 6 }}{2}}\end{array}} \right.\)
\(M{E_{\min }} = \frac{{3\sqrt 6 }}{2}\) khi
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.