Câu hỏi:

23/05/2022 189

Cho hai hàm f(x) và g(x) có đạo hàm trên [1; 2021] thỏa mãn f(2021) = g(2021) = 0, xx+12gx+2020x=x+1f'x x3x+1g'x+fx=2021x2 với mọi x1;2021. Tích phân 12021xx+1gxx+1xfxdx bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn D.

Ta có xx+12gx+2020x=x+1f'x1x+12gxx+1xf'x=2020 1.

Mặt khác x3x+1g'x+fx=2021x2xx+1g'x+1x2.fx=2021 2.

Cộng vế theo vế (1) và (2), ta được 1x+12gx+xx+1g'xx+1xf'x1x2fx=1

xx+1gxx+1xfx'=1 *.

Lấy nguyên hàm hai vế (*), ta được xx+1gxx+1xfx=x+C.

Vì f(2021) = g(2021) = 0 nên 0=2021+CC=2021.

Suy ra xx+1gxx+1xfx=x2021.

Vậy 12021xx+1gxx+1xfxdx=12021x2021dx=12x22021x20211

=12.20212+202112.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D.

Số phần tử của không gian mẫu là nΩ=C201=20.

Gọi A là biến cố số được chọn chia hết cho 3, khi đó A=3;6;9;12;15;18. Vậy n(A) = 6.

Khi đó xác suất của biến cố A 

                                   PA=nAnΩ=620=310.

Câu 2

Lời giải

Chọn C.

Có y=log2xy'=1xln2

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP