Câu hỏi:

23/05/2022 679

Có bao nhiêu số nguyên a  (a2) sao cho tồn tại số thực x thỏa mãn lnalogx4+4alogx2+4=ln(x2)loga?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn A.

Ta có:

lnalogx4+4alogx2+4=lnx2logalna4logx+4a2logx+4=lnx2loga

2lna2logx+2=lnx2loga

Đặt a2logx+2=tloga.2logx=logt2loga=logt22logx

lnt.lnt2=lnx.lnx2

Xét hàm fu=lnu.lnu2

f'u=lnu2u+lnuu2>0

Do t2=a2logx22log2>1

u=xa2logx=x2xx2loga=2x>x2loga2loga<1loga<12a<10a2;3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D.

Số phần tử của không gian mẫu là nΩ=C201=20.

Gọi A là biến cố số được chọn chia hết cho 3, khi đó A=3;6;9;12;15;18. Vậy n(A) = 6.

Khi đó xác suất của biến cố A 

                                   PA=nAnΩ=620=310.

Câu 2

Lời giải

Chọn C.

Có y=log2xy'=1xln2

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP