Câu hỏi:

23/05/2022 234

Cho hình chóp S.ABCD có đáy là tam giác vuông tại AAB=a3, AC=a , tam giác SBC đều và mặt trong mặt phẳng vuông góc với đáy (tham khảo hình vẽ). Góc giữa SA và mặt phẳng đáy là

Cho hình chóp S.ABCD có đáy là tam giác vuông tại A có  , tam giác SBC đều và mặt trong mặt phẳng vuông (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Cho hình chóp S.ABCD có đáy là tam giác vuông tại A có  , tam giác SBC đều và mặt trong mặt phẳng vuông (ảnh 2)

Kẻ SHBCSHABCSA;ABC^=SAH^.

Cạnh AH=12BC=12AB2+AC2=a SH=BC32=2a.32=a3.

tanSAH^=SHAH=3SAH^=60°.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau:

Cho hàm số f(x)  có bảng xét dấu của đạo hàm như sau: Hàm số y=f(x-1)+x^3-12x+2019 (ảnh 1)

Hàm số y=fx1+x312x+2019  nghịch biến trên khoảng nào dưới đây?

Lời giải

Đáp án B

Ta có y'=f'x1+3x212<0f'x1<03x212<00<x1<11<x1<2x1>32<x<21<x<22<x<3x>42<x<21<x<2.

Câu 2

Tìm số giá trị nguyên của m2020;2020  để hàm số fx=x36x2+5+m  đồng biến trên 5;+ .

Lời giải

Đáp án C

Xét với m=0fx=x36x2+5.

Gọi hx=x36x2+5h'x=3x212x=3xx4

h'x=0x=0x=4

Gọi a là số thực sao cho a > 5 ha=0.

Ta có bảng biến thiên sau:

Tìm số giá trị nguyên của  m thuộc [-2020; 2020] để hàm số  f(x)=|x^3-6x^2+5+m| đồng biến  (ảnh 1)

Nhìn vào bảng biến thiên muốn để fx=x36x2+5+m đồng biến trên 5;+ thì h5+m0m20. Do m2020;2020 nên có 2001 giá trị thỏa mãn.

Câu 3

Cho số phức z=a+bi a,b  thỏa mãn z8i+z6i=51+i . Tính giá trị của biểu thức P=a+b 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Số đường tiệm cận đứng và ngang của đồ thị hàm số y=x24x+3x2+74

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho cấp số nhân un  biết u2=2  và u5=16  . Tìm số hạng thứ 8 của cấp số nhân.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Trong không gian với hệ tọa độ Oxyz, cho 3 điểm A(-1;0;0) , B(0;3;0) , C(0;0;4). Phương trình nào dưới đây là phương trình của (ABC)  ?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Cho hàm số y=x44x3+2 . Số điểm cực trị của hàm số f(x) là  

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay