Câu hỏi:

23/05/2022 355

Cho hàm số \[y = f\left( x \right)\] liên tục trên \[\mathbb{R}\] và có bảng biến thiên như sau:

Cho hàm số y=f(x)  liên tục trên R  và có bảng biến thiên như sau:   (ảnh 1)

Xác định số nghiệm của phương trình \[\left| {f\left( {{x^3} - 3{x^2}} \right)} \right| = \frac{3}{2}\], biết \[f\left( { - 4} \right) = 0\]

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Đặt \[t = {x^3} - 3{x^2}\], ta có \[t' = 3{x^2} - 6x;t' = 0\left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\]

Bảng biến thiên (1):

Cho hàm số y=f(x)  liên tục trên R  và có bảng biến thiên như sau:   (ảnh 2)

Phương trình đã cho trở thành ft=32ft=32ft=32

Từ giả thiết, ta có bảng biến thiên (2) của hàm số \[y = f\left( x \right)\]:

Cho hàm số y=f(x)  liên tục trên R  và có bảng biến thiên như sau:   (ảnh 3)

Dựa vào bảng biến thiên (2), ta có

+) ft=32t=t1t1<41.1t=t2t2>21.2. Dựa vào bảng biến thiên (1), ta có phương trình (1.1) có 1 nghiệm và phương trình (1.2) có 1 nghiệm (các nghiệm này không trùng nhau).

ft=32t=t34<t3<2,2.1t=t42<t4<0,2.2t=t50<t5<2,2.3t=t6t6>2,2.4

Dựa vào bảng biến thiên (1), ta có phương trình (2.1) có 3 nghiệm; phương trình (2.2) có 3 nghiệm; phương trình (2.3) có 1 nghiệm; phương trình (2.4) có 1 nghiệm (các nghiệm này không trùng nhau và không trùng với các nghiệm của phương trình \[f\left( t \right) = \frac{3}{2}\]).

Vậy phương trình đã cho có 10 nghiệm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Họ tất cả các nguyên hàm của hàm số \[f\left( x \right) = 4x + \sin x\]

Xem đáp án » 23/05/2022 5,388

Câu 2:

Với a là số thực dương tùy ý, \[{\log _2}\left( {8a} \right)\] bằng

Xem đáp án » 23/05/2022 4,327

Câu 3:

Trong không gian Oxyz, cho mặt phẳng \[\left( P \right):2x - 3y + 6z - 5 = 0\] và điểm \[A\left( {2; - 3;1} \right)\]. Viết phương trình mặt phẳng \[\left( Q \right)\] đi qua A và song song với mặt phẳng \[\left( P \right)\]

Xem đáp án » 23/05/2022 2,428

Câu 4:

Biết hàm số \[f\left( x \right) = {x^3} + a{x^2} + bx + c\] đạt cực đại tại điểm \[x =  - 3,f\left( { - 3} \right) = 28\] và đồ thị của hàm số cắt trục tung tại điểm có tung độ bằng 1. Tính \[S = {a^2} + {b^2} - {c^2}\]

Xem đáp án » 23/05/2022 2,068

Câu 5:

Cho hàm số y=13x3+mx2+4m5x. Có bao nhiêu giá trị nguyên của tham số m để hàm số nghịch biến trên khoảng \[\left( { - \infty ; + \infty } \right)\]?

Xem đáp án » 23/05/2022 901

Câu 6:

Cho hai số phức \[{z_1} = 3 - 2i,{z_2} = 1 + i\]. Trên mặt phẳng tọa độ Oxy, điểm biểu diễn số phức \[{z_1}{z_2}\] có tọa độ là

Xem đáp án » 23/05/2022 764

Câu 7:

Trong không gian Oxyz, cho mặt phẳng P:3x4y+5z2=0. Vectơ nào dưới đây là một vectơ pháp tuyến của (P)?

Xem đáp án » 23/05/2022 668

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store