Câu hỏi:

23/05/2022 627

Cho hàm số \[y = f\left( x \right)\] liên tục trên \[\mathbb{R}\] và có bảng biến thiên như sau:

Cho hàm số y=f(x)  liên tục trên R  và có bảng biến thiên như sau:   (ảnh 1)

Xác định số nghiệm của phương trình \[\left| {f\left( {{x^3} - 3{x^2}} \right)} \right| = \frac{3}{2}\], biết \[f\left( { - 4} \right) = 0\]

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Đặt \[t = {x^3} - 3{x^2}\], ta có \[t' = 3{x^2} - 6x;t' = 0\left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\]

Bảng biến thiên (1):

Cho hàm số y=f(x)  liên tục trên R  và có bảng biến thiên như sau:   (ảnh 2)

Phương trình đã cho trở thành ft=32ft=32ft=32

Từ giả thiết, ta có bảng biến thiên (2) của hàm số \[y = f\left( x \right)\]:

Cho hàm số y=f(x)  liên tục trên R  và có bảng biến thiên như sau:   (ảnh 3)

Dựa vào bảng biến thiên (2), ta có

+) ft=32t=t1t1<41.1t=t2t2>21.2. Dựa vào bảng biến thiên (1), ta có phương trình (1.1) có 1 nghiệm và phương trình (1.2) có 1 nghiệm (các nghiệm này không trùng nhau).

ft=32t=t34<t3<2,2.1t=t42<t4<0,2.2t=t50<t5<2,2.3t=t6t6>2,2.4

Dựa vào bảng biến thiên (1), ta có phương trình (2.1) có 3 nghiệm; phương trình (2.2) có 3 nghiệm; phương trình (2.3) có 1 nghiệm; phương trình (2.4) có 1 nghiệm (các nghiệm này không trùng nhau và không trùng với các nghiệm của phương trình \[f\left( t \right) = \frac{3}{2}\]).

Vậy phương trình đã cho có 10 nghiệm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Họ tất cả các nguyên hàm của hàm số \[f\left( x \right) = 4x + \sin x\]

Xem đáp án » 23/05/2022 5,478

Câu 2:

Với a là số thực dương tùy ý, \[{\log _2}\left( {8a} \right)\] bằng

Xem đáp án » 23/05/2022 4,624

Câu 3:

Trong không gian Oxyz, cho mặt phẳng \[\left( P \right):2x - 3y + 6z - 5 = 0\] và điểm \[A\left( {2; - 3;1} \right)\]. Viết phương trình mặt phẳng \[\left( Q \right)\] đi qua A và song song với mặt phẳng \[\left( P \right)\]

Xem đáp án » 23/05/2022 2,502

Câu 4:

Biết hàm số \[f\left( x \right) = {x^3} + a{x^2} + bx + c\] đạt cực đại tại điểm \[x =  - 3,f\left( { - 3} \right) = 28\] và đồ thị của hàm số cắt trục tung tại điểm có tung độ bằng 1. Tính \[S = {a^2} + {b^2} - {c^2}\]

Xem đáp án » 23/05/2022 2,152

Câu 5:

Cho hàm số y=13x3+mx2+4m5x. Có bao nhiêu giá trị nguyên của tham số m để hàm số nghịch biến trên khoảng \[\left( { - \infty ; + \infty } \right)\]?

Xem đáp án » 23/05/2022 1,025

Câu 6:

Cho hai số phức \[{z_1} = 3 - 2i,{z_2} = 1 + i\]. Trên mặt phẳng tọa độ Oxy, điểm biểu diễn số phức \[{z_1}{z_2}\] có tọa độ là

Xem đáp án » 23/05/2022 774

Câu 7:

Trong không gian Oxyz, cho mặt phẳng P:3x4y+5z2=0. Vectơ nào dưới đây là một vectơ pháp tuyến của (P)?

Xem đáp án » 23/05/2022 690

Bình luận


Bình luận