Câu hỏi:

30/05/2022 2,554 Lưu

Cho tứ diện ABCD có AB = 2a, độ dài tất cả các cạnh còn lại cùng bằng a2. Diện tích của mặt cầu ngoại tiếp tứ diện đã cho bằng 

A. 16πa2

B. πa2

C. 4πa2

D. 43πa2

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có AC2+BC2=a22+a22=4a2=AB2AD2+BD2=a22+a22=4a2=AB2ΔABC,ΔABD là các tam giác vuông tại C, D

Gọi I là trung điểm của AB, ta có IC=12AB=IA=IBID=12AB=IA=IBIA=IB=IC=ID.

I là tâm mặt cầu ngoại tiếp tứ diện ABCD bán kính mặt cầu là R=IA=12AB=a.

Vậy diện tích mặt cầu là S=4πR2=4πa2.

Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. 2                             
B. 1                             
C. 32                            
D. 0

Lời giải

Ta có u1.u3=u22u1=u22u3=96=32.

Chọn C.

Lời giải

z1,z2 là hai nghiệm phức của phương trình z2+bz+c=0 nên z2=z1¯.

Khi đó ta có z286i=4z1¯86i=4z18+6i=4.

Gọi M là điểm biểu diễn số phức z1

M vừa thuộc đường tròn C1 tâm I14;3, bán kính R1=1 và đường tròn C2 tâm I28;6, bán kính R2=4.

mC1C2.

Cho các số thực b, c sao cho phương trình z^2 + bz + c = 0 có hai nghiệm (ảnh 1)

Ta có I1I2=42+32=5=R1+R2C1 C2 tiếp xúc ngoài.

Do đó có duy nhất 1 điểm M thỏa mãn, tọa độ điểm M là nghiệm của hệ x2+y28x+6y+24=0x2+y216x+12y+84=0

x=245y=185M245;185z1=245185i là nghiệm của phương trình z2+bz+c=0

z2=245+185i cũng là nghiệm của phương trình z2+bz+c=0

Áp dụng đinh lí Vi-ét ta có z1+z2=b=485b=485,z1z2=c=36.

Vậy 5b+c=48+36=12.

Chọn B.

Câu 3

A. ;6

B. (2; 6)

C. [2; 6)

D. 6;+

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. 

B. \1

C. 1;+

D. ;1

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP