Câu hỏi:

31/05/2022 3,442

Mặt sàn của một thang máy có dạng hình vuông ABCD cạnh 2m được lát gạch màu trắng và trang trí bởi một hình 4 cánh giống nhau màu sẫm. Khi đặt trong hệ toạ độ Oxy với O là tâm hình vuông sao cho A(1; 1) như hình vẽ bên thì các đường cong OA có phương trình y=x2 y=ax3+bx. Tính giá trị ab biết rằng diện tích trang trí màu sẫm chiếm 13 diện tích mặt sàn.

Mặt sàn của một thang máy có dạng hình vuông ABCD cạnh 2m được lát gạch (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Diện tích 1 cánh của hình trang trí là S1=01x2ax3bxdx=x33ax44bx2210=13a4b2.

 Diện tích hình trang trí là S=4S1=43a2b.

Vì diện tích trang trí màu sẫm chiếm 13 diện tích mặt sàn nên 43a2b=43a+2b=0.

Đồ thị hàm số y=ax3+bx đi qua điểm A(1; 1) nên a + b = 1.

Khi đó ta có a+2b=0a+b=1a=2b=1.

Vậy ab = -2.

Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Ta có u1.u3=u22u1=u22u3=96=32.

Chọn C.

Lời giải

z1,z2 là hai nghiệm phức của phương trình z2+bz+c=0 nên z2=z1¯.

Khi đó ta có z286i=4z1¯86i=4z18+6i=4.

Gọi M là điểm biểu diễn số phức z1

M vừa thuộc đường tròn C1 tâm I14;3, bán kính R1=1 và đường tròn C2 tâm I28;6, bán kính R2=4.

mC1C2.

Cho các số thực b, c sao cho phương trình z^2 + bz + c = 0 có hai nghiệm (ảnh 1)

Ta có I1I2=42+32=5=R1+R2C1 C2 tiếp xúc ngoài.

Do đó có duy nhất 1 điểm M thỏa mãn, tọa độ điểm M là nghiệm của hệ x2+y28x+6y+24=0x2+y216x+12y+84=0

x=245y=185M245;185z1=245185i là nghiệm của phương trình z2+bz+c=0

z2=245+185i cũng là nghiệm của phương trình z2+bz+c=0

Áp dụng đinh lí Vi-ét ta có z1+z2=b=485b=485,z1z2=c=36.

Vậy 5b+c=48+36=12.

Chọn B.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP