Câu hỏi:

02/06/2022 8,558

Biết rằng hàm số y = 2x2 + mx + n giảm trên khoảng (-∞; 1), tăng trên khoảng (1; + ∞) và có tập giá trị là [9; +∞). Xác định giá trị của m và n.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có giảm trên khoảng (-∞; 1), tăng trên khoảng (1; + ∞) và có tập giá trị là [9; +∞) nên điểm đỉnh S có tọa độ (1; 9).

Do đó xS = b2a=1m2.2=1m=4.

Và yS = 2.12 + m.1 + n = 9 2 + (-4) + n = 9 n = 11.

Vậy với m= -4 và n = 11 thì hàm số đã cho thỏa mãn điều kiện bài toán.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có sơ đồ sau:

Media VietJack

Điểm A là vị trí nhảy của người đó, E và F là chân bộ phận chống đỡ cầu.

Vì bộ phận chống đỡ cầu có dạng parabol (P) nên có phương trình: y = ax2 + bx + c.

Đoạn EF = 48 + 117 = 165 m, OE = EF : 2 = 165:2 = 82,5m

OH = OE – EH = 34,5 m

Khi đó tọa độ D(34,5; 46,2), E(-82,5; 0) và F(82,5; 0).

Vì các điểm D, E, F thuộc đồ thị hàm số (P) nên ta có hệ phương trình:

a.82,52+b.82,5+c=0a.82,52+b.82,5+c=0a.34,52+b.34,5+c=46,2a=779360b=0c=46565832  

Suy ra parabol cần tìm là: y=779360x2+46565832.

Điểm B là điểm đỉnh nên có xB = 0 và yB779360.02+46565832=46565832

Do đó OB = 46565832(m)

Khoảng cách từ vị trí nhảy đến mặt nước là:

AB + OB + OC = 1 + 46565832 + 43 ≈ 99,97 m.

Độ dài sợi dây là: 99,97: 3 = 33,32 m.

Vậy độ dài sợi dây là 33,32 m.

Lời giải

Gọi A là vị trí bắt đầu thả hàng, C là vị trí được chọn để nhận thùng hàng hỗ trợ.

Ta có O là hình chiếu của A trên mặt đất nên ta có hình vẽ sau:

Media VietJack

Tọa độ điểm C là nghiệm của hệ phương trình:

xC=v0tyC=h12gt2 với h = 80m, g = 9,8m/s2, v0 = 50m/s.

Do C ở mặt đất nên tung độ của C là yC = 0. Khi đó ta có hệ phương trình:

xC=50.t0=8012.9,8.t2xC=50.t0=8012.9,8.t2xC202,03t=2027xC202,03yC=0

 

Vậy vị trí được chọn để nhận thùng hàng hỗ trợ có tọa độ là (202,03; 0).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay