Câu hỏi:

02/06/2022 19,134

Nhảy bungee là một trò chơi mạo hiểm. Trong trò chơi này, người chơi đứng ở vị trí trên cao, thắt dây an toàn vả nhảy xuống. Sợi dây này có tính đàn hồi và được tính toán chiều dài để nó kéo người chơi lại khi gần chạm đất (hoặc mặt nước).

Chiếc cầu trong Hình 1 có bộ phận chống đỡ dạng parabol. Một người thực hiện một cú nhảy bungee từ giữa cầu xuống với dây an toàn. Người này cần trang bị sợi dây an toàn dài bao nhiêu mét? Biết rằng chiều dài của sợi dây đó bằng một phần ba khoảng cách từ vị trí bắt đầu nhảy đến mặt nước.

Media VietJack

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có sơ đồ sau:

Media VietJack

Điểm A là vị trí nhảy của người đó, E và F là chân bộ phận chống đỡ cầu.

Vì bộ phận chống đỡ cầu có dạng parabol (P) nên có phương trình: y = ax2 + bx + c.

Đoạn EF = 48 + 117 = 165 m, OE = EF : 2 = 165:2 = 82,5m

OH = OE – EH = 34,5 m

Khi đó tọa độ D(34,5; 46,2), E(-82,5; 0) và F(82,5; 0).

Vì các điểm D, E, F thuộc đồ thị hàm số (P) nên ta có hệ phương trình:

a.82,52+b.82,5+c=0a.82,52+b.82,5+c=0a.34,52+b.34,5+c=46,2a=779360b=0c=46565832  

Suy ra parabol cần tìm là: y=779360x2+46565832.

Điểm B là điểm đỉnh nên có xB = 0 và yB779360.02+46565832=46565832

Do đó OB = 46565832(m)

Khoảng cách từ vị trí nhảy đến mặt nước là:

AB + OB + OC = 1 + 46565832 + 43 ≈ 99,97 m.

Độ dài sợi dây là: 99,97: 3 = 33,32 m.

Vậy độ dài sợi dây là 33,32 m.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi A là vị trí bắt đầu thả hàng, C là vị trí được chọn để nhận thùng hàng hỗ trợ.

Ta có O là hình chiếu của A trên mặt đất nên ta có hình vẽ sau:

Media VietJack

Tọa độ điểm C là nghiệm của hệ phương trình:

xC=v0tyC=h12gt2 với h = 80m, g = 9,8m/s2, v0 = 50m/s.

Do C ở mặt đất nên tung độ của C là yC = 0. Khi đó ta có hệ phương trình:

xC=50.t0=8012.9,8.t2xC=50.t0=8012.9,8.t2xC202,03t=2027xC202,03yC=0

 

Vậy vị trí được chọn để nhận thùng hàng hỗ trợ có tọa độ là (202,03; 0).

Lời giải

Ta có giảm trên khoảng (-∞; 1), tăng trên khoảng (1; + ∞) và có tập giá trị là [9; +∞) nên điểm đỉnh S có tọa độ (1; 9).

Do đó xS = b2a=1m2.2=1m=4.

Và yS = 2.12 + m.1 + n = 9 2 + (-4) + n = 9 n = 11.

Vậy với m= -4 và n = 11 thì hàm số đã cho thỏa mãn điều kiện bài toán.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay