Câu hỏi:
13/07/2024 1,6881) Giải hệ phương trình \[\left\{ \begin{array}{l}3x + y = 11\\2x + 3y = 12\end{array} \right.\].
2) Giải phương trình: \[{x^2} - x - 12 = 0\]
3) Cho phương trình: \[2{x^2} - 4mx + 2{m^2} - 1 = 0\] (1) với m là tham số.
a) Chứng minh với mọi giá trị của m, phương trình (1) luôn có 2 nghiệm phân biệt.
b) Tìm m để phương trình có 2 nghiệm \[{x_1},\,\,{x_2}\] thỏa mãn \[2x_1^2 + 4m{x_2} + 2{m^2} - 9 < 0\].
Câu hỏi trong đề: Đề ôn thi vào 10 môn Toán có đáp án (Mới nhất) !!
Quảng cáo
Trả lời:
1) Hệ phương trình tương đương với:
\[\left\{ \begin{array}{l}y = 11 - 3x\\2x + 3\left( {11 - 3x} \right) = 12\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 11 - 3x\\ - 7x = - 21\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 3\\y = 2\end{array} \right.\]
Vậy hệ phương trình có nghiệm là: \[\left( {x;\,\,y} \right) = \left( {3;\,\,2} \right)\]
2)
Cách 1: Phương trình tương đương với: \[\left( {{x^2} + 3x - 4x} \right) - 12 = 0\]
\[ \Leftrightarrow x\left( {x + 3} \right) - 4\left( {x + 3} \right) = 0 \Leftrightarrow \left( {x + 3} \right)\left( {x - 4} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x + 3 = 0\\x - 4 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - 3\\x = 4\end{array} \right.\]
Cách 2: Ta có \[\Delta = {\left( { - 1} \right)^2} - 4.1.\left( { - 12} \right) = 49 \Rightarrow \sqrt \Delta = 7\].
Phương trình có nghiệm là: \[\left[ \begin{array}{l}x = \frac{{ - \left( { - 1} \right) + 7}}{{2.1}}\\x = \frac{{ - \left( { - 1} \right) - 7}}{{2.1}}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 4\\x = - 3\end{array} \right.\]
Vậy phương trình có nghiệm là: \[x = - 3;\,\,x = 4\]
3)
a) Ta có: \[\Delta ' = 4{m^2} - 2\left( {2{m^2} - 1} \right) = 2 > 0,\,\,\forall m\]
Vậy phương trình (1) luôn có 2 nghiệm phân biệt với mọi m.
b) Theo định lý Vi-ét, ta có \[{x_1} + {x_2} = 2m\]
Do đó \[2x_1^2 + 4m{x_2} + 2{m^2} - 9 = \left( {2x_1^2 - 4m{x_1} + 2{m^2} - 1} \right) + 4m\left( {{x_1} + {x_2}} \right) - 8\]
\[ = 8{m^2} - 8 = 8\left( {m - 1} \right)\left( {m + 1} \right)\] (do \[2x_1^2 - 4m{x_1} + 2{m^2} - 1 = 0\]).
Theo bài ra, ta có \[\left( {m - 1} \right)\left( {m + 1} \right) < 0 \Leftrightarrow - 1 < m < 1\].
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
1) Ta có \[\widehat {PAO} + \widehat {PMO} = 90^\circ + 90^\circ = 180^\circ \] suy ra tứ giác APMO là tứ giác nội tiếp.
Nhận xét: Bài toán chứng minh một tứ giác là tứ giác nội tiếp bằng cách chứng minh tứ giác đó có tổng hai góc trong đối diện bằng 180°.
2) Ta có: \[\widehat {ABM} = \frac{{\widehat {AOM}}}{2}\] (góc nội tiếp và góc ở tâm) (1)
\[\widehat {AOP} = \frac{{\widehat {AOM}}}{2}\] (tính chất hai tiếp tuyến cắt nhau) (2)
Suy ra \[\widehat {ABM} = \widehat {AOP}\]. Do đó BM // OP
Nhận xét: Bài toán chứng minh hai đường thẳng song song bằng cách chứng minh hai góc ở vị trí đồng vị của hai đường thẳng đó bằng nhau.
3) Ta có ∆AOP = ∆OBN (g-c-g), suy ra \[OP = BN\].
Mà: BN // OP (do BM // OP)
Suy ra OBNP là hình bình hành.
Nhận xét: Bài toán chứng minh một tứ giác là hình bình hành bằng cách chỉ ra tứ giác đó có một cặp cạnh đối song song và bằng nhau.
4) Ta có: AONP là hình chữ nhật nên AP // NO suy ra \[\widehat {APO} = \widehat {NOP}\] (hai góc so le trong) (4)
\[\widehat {APO} = \widehat {MPO}\] (tính chất hai tiếp tuyến cắt nhau) (5)
Từ (4) và (5) suy ra ∆IPO cân tại I suy ra IK là trung tuyến (AONP là hình chữ nhất nên K là trung điểm của PO) nên IK cũng là đường cao hay \[IK \bot PO\] (*)
Ta có \[\left\{ \begin{array}{l}ON \bot PJ\\PM \bot OJ\\ON \cap PM = \left\{ I \right\}\end{array} \right.\] nên I là trực tâm của tam giác ∆POỊ nên \[IJ \bot OP\] (**).
Từ (*) và (**), suy ra ba điểm I, J, K thẳng hàng.
Nhận xét: Bài toán chứng minh ba điểm thẳng hàng ta chứng minh cho ba điểm đó cùng nằm trên một đường thẳng đặc biệt.
Lời giải
1) Gọi x là số chi tiết máy của tổ 1 và y là số chi tiết máy của tổ 2 sản xuất được trong tháng giêng.
Điều kiện: \[x,\,\,y \in \mathbb{N}*\]
Ta có: \[x + y = 900\] (1) (vì tháng giêng 2 tổ sản xuất được 900 chi tiết).
Do cải tiến kỹ thuật nên tháng hai tổ 1 sản xuất đuợc: \[x + 15\% x\] và và tổ 2 sản xuất đuợc: \[y + 10\% y\].
Cả hai tổ sản xuất được: \[1,15x + 1,10y = 1010\] (2)
Từ (1), (2) ta có hệ phương trình: \[\left\{ \begin{array}{l}x + y = 900\\1,15x + 1,1y = 1010\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}1,1x + 1,1y = 900\\1,15x + 1,1y = 1010\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}0,05x = 20\\x + y = 900\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 400\\y = 500\end{array} \right.\] (thỏa mãn)
Vậy trong tháng giêng tổ 1 sản xuất được 400 chi tiết máy và tổ 2 sản xuất được 500 chi tiết máy.
Nhận xét: Giải bài toán bằng cách lập hệ phương trình từ kiến thức về bài toán "phần trăm". Cách tính số lượng tăng/giảm theo phần trăm, công thức từ bài toán năng suất, ...:
“ a% của một số X được tính bằng \[\frac{{a.X}}{{100}}\] (đơn vị theo X)”
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Tổng hợp các bài toán thực tế ôn thi vào 10 Toán 9 có đáp án (Phần 2: Hình học)
12 bài tập Một số bài toán thực tế liên quan đến bất đẳng thức có lời giải
Chuyên đề 8: Hình học (có đáp án)
12 bài tập Một số bài toán thực tế liên quan đến bất phương trình bậc nhất một ẩn có lời giải
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận