Câu hỏi:

12/07/2024 1,279

Cho biểu thức: \[P = \frac{{x\sqrt x + 1}}{{\sqrt x + 1}} - \sqrt x \]

1) Tìm điều kiện xác định và rút gọn biểu thức P?

2) Tính giá trị của P tại x thỏa mãn \[{x^2} - \frac{{\sqrt 5 }}{{\sqrt 5 - 2}}x - \left( {6 + 2\sqrt 5 } \right) = 0?\]

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

1) Điều kiện xác định: \[x \ge 0\].

Ta có: \[P = \frac{{x\sqrt x + 1}}{{\sqrt x + 1}} - \sqrt x = \frac{{{{\left( {\sqrt x } \right)}^3} + {1^3}}}{{\sqrt x + 1}} - \sqrt x \]

\[ = \frac{{\left( {\sqrt x + 1} \right)\left( {x - \sqrt x + 1} \right)}}{{\sqrt x + 1}} - \sqrt x \]

\[ = x - \sqrt x + 1 - \sqrt x = x - 2\sqrt x + 1.\]

Vậy \[P = x - 2\sqrt x + 1.\]

Cách 2: Đặt \[a = \sqrt x \left( {a \ge 0} \right).\]

Ta có: \[P = \frac{{{a^3} + 1}}{{a + 1}} - a = \frac{{\left( {a + 1} \right)\left( {{a^2} - a + 1} \right)}}{{a + 1}} - a = {a^2} - 2a + 1 = x - 2\sqrt x + 1.\]

Nhận xét: Bài toán rút gọn biểu thức áp dụng quy tắc tìm điều kiện và các phương pháp phân tích đa thức thành nhân tử.

2) Ta có: \[{x^2} - \frac{{\sqrt 5 }}{{\sqrt 5 - 2}}x - \left( {6 + 2\sqrt 5 } \right) = 0 \Leftrightarrow {x^2} - \left( {5 + 2\sqrt 5 } \right)x - \left( {6 + 2\sqrt 5 } \right) = 0\]

\[ \Leftrightarrow \left( {x + 1} \right)\left[ {x - \left( {6 + 2\sqrt 5 } \right)} \right] = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 6 + 2\sqrt 5 \end{array} \right. \Rightarrow x = 6 + 2\sqrt 5 \] (vì \[x \ge 0\])

Nên ta có \[P = \left( {6 + 2\sqrt 5 } \right) - 2\sqrt {6 + 2\sqrt 5 } + 1 = 7 + 2\sqrt 5 - 2\sqrt {{{\left( {\sqrt 5 + 1} \right)}^2}} \]

\[ = 7 + 2\sqrt 5 - 2\sqrt {{{\left( {\sqrt 5 + 1} \right)}^2}} = 7 + 2\sqrt 5 - 2\sqrt 5 - 2 = 5.\]

Vậy \[P = 5\].

Nhận xét: Bài toán tìm giá trị của biểu thức khi biết biến thỏa mãn một điều kiện nào đó. Ta tìm biến rồi thay vào biểu thức để tìm giá trị.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

1) Điều kiện: \[xy \ne 0\]

Đặt \[\left\{ \begin{array}{l}\frac{1}{x} = a\\\frac{1}{y} = b\end{array} \right.\]. Hệ phương trình trở thành: \[\left\{ \begin{array}{l}6a + 5b = 1\\9a - 10b = 1\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}a = \frac{{3 - 5b}}{6}\\9\left( {\frac{{3 - 5b}}{6}} \right) - 10b = 1\end{array} \right. \Leftrightarrow \left( \begin{array}{l}a = \frac{{3 - 5b}}{6}\\\frac{7}{2} = \frac{{35}}{2}b\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \frac{1}{3}\\b = \frac{1}{5}\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}\frac{1}{x} = \frac{1}{3}\\\frac{1}{y} = \frac{1}{5}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 3\\y = 5\end{array} \right.\] (thỏa mãn điều kiện).

Vậy hệ phương trình có nghiệm: \[\left( {x;y} \right) = \left( {3;5} \right)\].

2) Ta có bảng xét dấu các biểu thức

Media VietJack

+ Xét: \[x \le - 1\left( * \right)\].

Phương trình tương đương với: \[\left( {1 - 2x} \right) - \left( {x + 1} \right) = x + 2\]

\[ \Leftrightarrow - 3x = x + 2 \Leftrightarrow 4x = 2 \Leftrightarrow x = \frac{1}{2}\] (không thỏa mãn điều kiện (*)).

+ Xét: \[ - 1 < x \le \frac{1}{2}\left( {**} \right)\]

Phương trình tương đương với: \[\left( {1 - 2x} \right) + \left( {x + 1} \right) = x + 2\]

\[ \Leftrightarrow 2 - x = x + 2 \Leftrightarrow 0 = 2x \Leftrightarrow x = 0\] (thỏa mãn điều kiện (**)).

+ Xét: \[x > \frac{1}{2}\left( {***} \right)\].

Phương trình tương đương với: \[ - \left( {1 - 2x} \right) + \left( {x + 1} \right) = x + 2\]

\[ \Leftrightarrow 3x = x + 2 \Leftrightarrow 2x = 2 \Leftrightarrow x = 1\] (thỏa mãn điều kiện (***)).

Vậy phương trình có nghiệm: \[x = 0;x = 1\].

3) Ta có: \[\Delta = {\left( { - m} \right)^2} - 4.1.1 = {m^2} - 4.\]

Để phương trình có hai nghiệm phân biệt thì: \[{m^2} - 4 \ge 0 \Leftrightarrow \left[ \begin{array}{l}m \ge 2\\m \le - 2\end{array} \right.\].

Theo hệ thức Vi-ét, ta có: \[\left\{ \begin{array}{l}{x_1} + {x_2} = m\\{x_1}.{x_2} = 1\end{array} \right..\]

Ta có \[{\left( {{x_1} + 1} \right)^2} + {\left( {{x_2} + 1} \right)^2} = 2 \Leftrightarrow x_1^2 + 2{x_1} + 1 + x_2^2 + 2{x_2} + 1 = 2\]

\[ \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} + 2\left( {{x_1} + {x_2}} \right) - 2{x_1}.{x_2} = 0.\]

\[ \Leftrightarrow {m^2} + 2m - 2 = 0 \Leftrightarrow \left[ \begin{array}{l}m = \sqrt 3 - 1\left( l \right)\\m = - \sqrt 3 - 1\end{array} \right.\]. Vậy \[m = - \sqrt 3 - 1\].

Lời giải

Đường tròn (O), đường kính. Một cát tuyến MN quay quanh trung điểm H của OB.  1) Chứng minh MN khi di động, trung điểm I của luôn nằm trên một đường (ảnh 1)

1) I là trung điểm của MN nên \[OI \bot MN\] (quan hệ đường kính – dây cung) \[ \Rightarrow \widehat {OIH} = 90^\circ \]

Do OH cố định nên khi MN di động thì I chạy trên đường tròn đường kính OH.

Nhận xét: Bài toán chứng minh một điểm luôn nằm trên đường cố định.

2) Ta có \[AC//OI\] vì cùng vuông góc với MN.

Mà O là trung điểm của AB nên I là trung điểm của BC

Lại có I là trung điểm của nên CMBN là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường) (điều cần chứng minh).

Nhận xét: Bài toán chứng minh tứ giác là hình bình hành bằng cách chứng minh tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường.

3) CMBN là hình bình hành nên \[MC//BN\]

\[BN \bot NA\] (\[\widehat {BNA} = 90^\circ \]do tính chất góc nội tiếp chắn nửa đường tròn)

Lại có \[AC \bot MN\]

Suy ra C là trực tâm tam giác AMN (điều cần chứng minh).

Nhận xét: Bài toán chứng minh một điểm là trực tâm của tam giác bằng cách chứng minh nó là giao điểm của hai đường cao.

4) Ta có H là trung điểm của OB, I là trung điểm của BC nên IH là đường trung bình của \[\Delta OBC\]

\[ \Rightarrow IH//OC\]

\[OC \bot Ax \Rightarrow \widehat {OCA} = 90^\circ \], nên C thuộc đường tròn đường kính OA cố định.

Vậy khi MN quay quanh H thì C di chuyển trên đường tròn đường kính OA cố định.

Nhận xét: Bài toán tìm quỹ tích của một điểm.

 5) \[AM.AN = 3{R^2},AN = R\sqrt 3 \Rightarrow AM = \frac{{3{R^2}}}{{AN}} = \frac{{3{R^2}}}{{R\sqrt 3 }} = R\sqrt 3 \Rightarrow AM = AN = R\sqrt 3 \]

\[ \Rightarrow \Delta AMN\] cân tại A.

Xét \[\Delta ABN\] vuông tại N có \[AB = 2R;AN = R\sqrt 3 \Rightarrow BN = R \Rightarrow \widehat {ABN} = 60^\circ .\]

\[\widehat {ABN} = \widehat {AMN}\] (góc nội tiếp) nên \[\widehat {AMN} = 60^\circ \]

Suy ra \[\Delta AMN\] đều

\[ \Rightarrow {S_{\Delta AMN}} = \frac{{{{\left( {R\sqrt 3 } \right)}^2}\sqrt 3 }}{4} = \frac{{3{R^2}\sqrt 3 }}{4}\]

\[ \Rightarrow S = {S_{\left\{ O \right\}}} - {S_{\Delta AMN}} = \pi {R^2} - \frac{{3{R^2}\sqrt 3 }}{4} = \frac{{{R^2}\left( {4\pi - 3\sqrt 3 } \right)}}{4}.\]

Nhận xét: Bài toán tính diện tích liên quan đến hình tròn và tam giác.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP