Câu hỏi:
12/07/2024 3,688Cho biểu thức: \[P = \left( {\frac{{4\sqrt x }}{{2 + \sqrt x }} + \frac{{8x}}{{4 - x}}} \right):\left( {\frac{{\sqrt x - 1}}{{x - 2\sqrt x }} - \frac{2}{{\sqrt x }}} \right)\] với \(x > 9\).
1) Rút gọn biểu thức P?
2) Tìm m để với mọi giá trị \(x > 9\) ta có \(m\left( {\sqrt x - 3} \right)P > x + 1\)
Câu hỏi trong đề: Đề ôn thi vào 10 môn Toán có đáp án (Mới nhất) !!
Quảng cáo
Trả lời:
1) Với \(x > 9\) thì biểu thức P đã có nghĩa.
Ta có: \[P = \left[ {\frac{{4\sqrt x \left( {2 - \sqrt x } \right)}}{{\left( {2 + \sqrt x } \right)\left( {2 - \sqrt x } \right)}} + \frac{{8x}}{{4 - x}}} \right]:\left[ {\frac{{\sqrt x - 1}}{{x - 2\sqrt x }} - \frac{{2\left( {\sqrt x - 2} \right)}}{{\sqrt x \left( {\sqrt x - 2} \right)}}} \right]\]
\[ = \left[ {\frac{{4\sqrt x \left( {2 - \sqrt x } \right) + 8x}}{{4 - x}}} \right]:\left[ {\frac{{\sqrt x - 1 - 2\left( {\sqrt x - 2} \right)}}{{x - 2\sqrt x }}} \right] = \left( {\frac{{8\sqrt x + 4x}}{{4 - x}}} \right):\left( {\frac{{3 - \sqrt x }}{{x - 2\sqrt x }}} \right)\]
\( = \left[ {\frac{{4\sqrt x \left( {\sqrt x + 2} \right)}}{{\left( {2 - \sqrt x } \right)\left( {2 + \sqrt x } \right)}}} \right].\left( {\frac{{x - 2\sqrt x }}{{3 - \sqrt x }}} \right) = \left( {\frac{{4\sqrt x }}{{2 - \sqrt x }}} \right).\left[ {\frac{{\sqrt x \left( {\sqrt x - 2} \right)}}{{3 - \sqrt x }}} \right] = \frac{{4x}}{{\sqrt x - 3}}\)
Vậy \(P = \frac{{4x}}{{\sqrt x - 3}}\)
Cách 2: Đặt \(a = \sqrt x \) \(a \ge 0\)
Ta có: \(P = \left( {\frac{{4a}}{{2 + a}} + \frac{{8{a^2}}}{{4 - {a^2}}}} \right):\left( {\frac{{a - 1}}{{{a^2} - 2a}} - \frac{2}{a}} \right)\)
\( = \left[ {\frac{{4a\left( {2 - a} \right)}}{{\left( {2 + a} \right)\left( {2 - a} \right)}} + \frac{{8{a^2}}}{{\left( {2 + a} \right)\left( {2 - a} \right)}}} \right]:\left[ {\frac{{a - 1}}{{a\left( {a - 2} \right)}} - \frac{{2\left( {a - 2} \right)}}{{a\left( {a - 2} \right)}}} \right]\)
\( = \frac{{4a\left( {2 - a} \right) + 8{a^2}}}{{\left( {2 + a} \right)\left( {2 - a} \right)}}:\frac{{a - 1 - 2\left( {a - 2} \right)}}{{a\left( {a - 2} \right)}} = \frac{{4{a^2} + 8a}}{{\left( {2 + a} \right)\left( {2 - a} \right)}}:\frac{{3 - a}}{{a\left( {a - 2} \right)}}\)
\( = \frac{{4a\left( {a + 2} \right)}}{{\left( {2 + a} \right)\left( {2 - a} \right)}}.\frac{{a\left( {a - 2} \right)}}{{3 - a}} = \frac{{4{a^2}}}{{a - 3}} = \frac{{4x}}{{\sqrt x - 3}}\)
Nhận xét. Bài toán rút gọn biểu thức áp dụng phương pháp phân tích đa thức thành nhân tử.
2) Ta có: \(m\left( {\sqrt x - 3} \right)P > x + 1 \Leftrightarrow m\left( {\sqrt x - 3} \right).\frac{{4x}}{{\sqrt x - 3}} > x + 1\)
\( \Leftrightarrow 4mx > x + 1 \Leftrightarrow \left( {4m - 1} \right)x > 1 \Leftrightarrow \left\{ \begin{array}{l}4m - 1 > 0 \Leftrightarrow m < \frac{1}{4}\\x > \frac{1}{{4m - 1}}\,\,\left( * \right)\end{array} \right.\)
Giải (*), do \(x > 9 \Leftrightarrow \frac{1}{{4m - 1}} > 9 \Leftrightarrow \frac{1}{9} > 4m - 1 \Leftrightarrow \frac{5}{{18}} > m\)
Như vậy \(\frac{1}{4} < m < \frac{5}{{18}}\).
Nhận xét: Bài toán tìm điều kiện của tham số để biến thỏa mãn một bất đẳng thức trước
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
1) \(\Delta SBC\) và \(\Delta SMA\) có:
\(\widehat {BSC} = \widehat {MSA}\), \(\widehat {SCB} = \widehat {SAM}\) (góc nội tiếp cùng chắn )
\( \Rightarrow \Delta DBC\) đồng dạng với \(\Delta SMA\).
Nhận xét: Bài toán chứng minh hai tam giác đồng dạng theo trường hợp góc – góc.
2) Vì \(AB \bot CD\) nên .
Suy ra: \(\widehat {MHB} = \widehat {MKB}\) (vì cùng bằng )
\( \Rightarrow \) Tứ giác BMHK nội tiếp được đường tròn \( \Rightarrow \widehat {HMB} + \widehat {HKB} = 180^\circ \). (1)
Lại có: \(\widehat {HMB} = \widehat {AMB} = 90^\circ \) (2) (góc nội tiếp chắn nửa đường tròn)
Từ (1) (2) suy ra \(\widehat {HKB} = 90^\circ \) do đó \(HK//CD\) (cùng vuông góc với AB).
Nhận xét: Bài toán chứng minh hai đường thẳng song song bằng cách chứng minh chúng cùng vuông góc với một đường thẳng thứ ba.
3) Vẽ đường kính MN suy ra .
Ta có:
Mà và nên \(\widehat {OSM} = \widehat {OMK}\)
\( \Rightarrow \Delta OSM\) đồng dạng với \(\Delta OMK\)
\( \Rightarrow \frac{{OS}}{{OM}} = \frac{{OM}}{{OK}} \Rightarrow OK.OS = {R^2}\)
Nhận xét: Bài toán chứng minh một đẳng thức bằng cách chứng minh tam giác đồng dạng.
Lời giải
1) Gọi chiều dài của thửa ruộng là \[x\] (m).
Chiều rộng là y (m).
Điều kiện:\[x,{\rm{ }}y > 0\] .
Diện tích thửa ruộng là \(x.y\).
Nếu tăng chiều dài thêm 2m, chiều rộng thêm 3 m thì diện tích thửa ruộng lúc này là: \(\left( {x + 2} \right)\left( {y + 3} \right)\) và diện tích tăng thêm 100m2, tức là \(\left( {x + 2} \right)\left( {y + 3} \right) = xy + 100\) (1)
Nếu giảm cả chiều dài và chiều rộng 2m thì diện tích thửa ruộng còn lại là \(\left( {x - 2} \right)\left( {y - 2} \right)\) và diện tích giảm đi 68m2, tức là \(\left( {x - 2} \right)\left( {y - 2} \right) = xy - 68\) (2)
Từ (1) và (2), ta có hệ phương trình \(\left\{ \begin{array}{l}\left( {x + 2} \right)\left( {y + 3} \right) = xy + 100\\\left( {x - 2} \right)\left( {y - 2} \right) = xy - 68\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}xy + 3x + 2y + 6 = xy + 100\\xy - 2x - 2y + 4 = xy - 68\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x + 2y = 94\\2x + 2y = 72\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 22\\x + y = 36\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 22\\y = 14\end{array} \right.\)
Vậy diện tích thửa ruộng là: \(S = 22.14 = 308\left( {{m^2}} \right)\)
2) Đường thẳng \(\left( d \right):y = ax + b\) cắt trục tung tại điểm có tung độ bằng \( - 2\), nên ta có phưong trình: \( - 2 = a.0 + b \Leftrightarrow b = - 2\)
Suy ra đường thẳng \(\left( d \right)\) có dạng: \(y = ax - 2\).
Đường thẳng \(\left( d \right):y = ax - 2\) cắt đồ thị \(\left( P \right):y = \frac{1}{4}{x^2}\) tại điểm có hoành độ bằng 2, nên ta có phương trình:\(a.2 - 2 = \frac{1}{4}{.2^2} \Leftrightarrow a = \frac{3}{2}\)
Vậy đường thẳng \(\left( d \right)\) là: \(y = \frac{3}{2}x - 2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Tổng hợp các bài toán thực tế ôn thi vào 10 Toán 9 có đáp án (Phần 2: Hình học)
12 bài tập Một số bài toán thực tế liên quan đến bất đẳng thức có lời giải
Chuyên đề 8: Hình học (có đáp án)
12 bài tập Một số bài toán thực tế liên quan đến bất phương trình bậc nhất một ẩn có lời giải
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận