Câu hỏi:

19/08/2025 3,464 Lưu

1) Giải hệ phương trình \(\left\{ \begin{array}{l}\left( {2x + 3y - 2} \right)\left( {x - 5y - 3} \right) = 0\\x - 3y = 1\end{array} \right.\)

2) Giải phương trình: \(3\sqrt {x - 2}  - \sqrt {{x^2} - 4}  = 0\).

3) Cho phương trình \(\left( {2m - 1} \right){x^2} - 2mx + 1 = 0\). Tìm m để phương trình trên có nghiệm thuộc khoảng \(\left( { - 1;0} \right)\)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

1) Hệ Phương trình tương đương với: \(\left\{ \begin{array}{l}\left[ \begin{array}{l}2x + 3y - 2 = 0\\x - 5y - 3 = 0\end{array} \right.\\x - 3y = 1\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}2x + 3y - 2 = 0\\x - 3y = 1\end{array} \right. \vee \left\{ \begin{array}{l}x - 5y - 3 = 0\\x - 3y = 1\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}2\left( {1 + 3y} \right) + 3y - 2 = 0\\x = 1 + 3y\end{array} \right. \vee \left\{ \begin{array}{l}\left( {1 + 3y} \right) - 5y - 3 = 0\\x = 1 + 3y\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}9y = 0\\x = 1 + 3y\end{array} \right. \vee \left\{ \begin{array}{l} - 2y - 2 = 0\\x = 1 + 3y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 0\end{array} \right. \vee \left\{ \begin{array}{l}x =  - 2\\y =  - 1\end{array} \right.\)

Vậy hệ phương trình có nghiệm là: \(\left( {x;y} \right) = \left( {1;0} \right),\,\,\left( { - 2; - 1} \right)\)

2) Điều kiện: \(\left\{ \begin{array}{l}x - 2 \ge 0\\{x^2} - 4 \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge 2\\\left[ \begin{array}{l}x \le  - 1\\x \ge 2\end{array} \right.\end{array} \right. \Leftrightarrow x \ge 2\)

Phương trình tương đương \[3\sqrt {x - 2}  - \sqrt {\left( {x - 2} \right)\left( {x + 2} \right)}  = 0\]

\( \Leftrightarrow \sqrt {x - 2} \left( {3 - \sqrt {x + 2} } \right) = 0 \Leftrightarrow \left[ \begin{array}{l}\sqrt {x - 2}  = 0\\3 - \sqrt {x + 2}  = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 2\\x + 2 = 9\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = 7\end{array} \right.\) (thõa mãn điều kiện)

3) + Xét \(2m - 1 = 0 \Leftrightarrow m = \frac{1}{2}\)phương trình trở thành: \( - x + 1 = 0 \Leftrightarrow x = 1\), không thuộc khoảng \(\left( { - 1;0} \right)\).

+ Xét \(2m - 1 \ne 0 \Leftrightarrow m \ne \frac{1}{2}\), khi đó ta có

\(\Delta ' = {m^2} - \left( {2m - 1} \right).1 = {m^2} - 2m + 1 = {\left( {m - 1} \right)^2} \ge 0,\,\,\forall m\); nên phương trình có nghiệm với mọi m.

Suy ra \(\sqrt {\Delta '}  = m - 1\).

Phương trình có nghiệm là: \(\left\{ \begin{array}{l}x = \frac{{m + \left( {m - 1} \right)}}{{2m - 1}} = 1 \notin \left( { - 1;0} \right)\\x = \frac{{m - \left( {m - 1} \right)}}{{2m - 1}} = \frac{1}{{2m - 1}}\end{array} \right.\)

Theo bài ra, ta có: \( - 1 < \frac{1}{{2m - 1}} < 0 \Leftrightarrow \left\{ \begin{array}{l} - 1 < \frac{1}{{2m - 1}}\\\frac{1}{{2m - 1}} < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\frac{{2m}}{{2m - 1}} > 0\\2m - 1 < 0\end{array} \right. \Leftrightarrow m < 0\)

Vậy phương trình có nghiệm thuộc khoảng \(\left( { - 1;0} \right)\) khi và chỉ khi \(m < 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho đường tròn (O;R) có đường kính AB. Vẽ dây cung CD vuông góc với AB (CD không đi qua tâm O). Trên tia đối của tia BA (ảnh 1)

1) \(\Delta SBC\) và \(\Delta SMA\) có:

\(\widehat {BSC} = \widehat {MSA}\), \(\widehat {SCB} = \widehat {SAM}\) (góc nội tiếp cùng chắn )

\( \Rightarrow \Delta DBC\) đồng dạng với \(\Delta SMA\).

Nhận xét: Bài toán chứng minh hai tam giác đồng dạng theo trường hợp góc – góc.

2) Vì \(AB \bot CD\) nên .

Suy ra: \(\widehat {MHB} = \widehat {MKB}\) (vì cùng bằng )

\( \Rightarrow \) Tứ giác BMHK nội tiếp được đường tròn \( \Rightarrow \widehat {HMB} + \widehat {HKB} = 180^\circ \). (1)

Lại có: \(\widehat {HMB} = \widehat {AMB} = 90^\circ \) (2) (góc nội tiếp chắn nửa đường tròn)

Từ (1) (2) suy ra \(\widehat {HKB} = 90^\circ \) do đó \(HK//CD\) (cùng vuông góc với AB).

Nhận xét: Bài toán chứng minh hai đường thẳng song song bằng cách chứng minh chúng cùng vuông góc với một đường thẳng thứ ba.

3) Vẽ đường kính MN suy ra  .

Ta có:

Mà  và  nên \(\widehat {OSM} = \widehat {OMK}\)

\( \Rightarrow \Delta OSM\) đồng dạng với \(\Delta OMK\)

\( \Rightarrow \frac{{OS}}{{OM}} = \frac{{OM}}{{OK}} \Rightarrow OK.OS = {R^2}\)

Nhận xét: Bài toán chứng minh một đẳng thức bằng cách chứng minh tam giác đồng dạng.

Lời giải

1) Với \(x > 9\) thì biểu thức P đã có nghĩa.

Ta có: \[P = \left[ {\frac{{4\sqrt x \left( {2 - \sqrt x } \right)}}{{\left( {2 + \sqrt x } \right)\left( {2 - \sqrt x } \right)}} + \frac{{8x}}{{4 - x}}} \right]:\left[ {\frac{{\sqrt x  - 1}}{{x - 2\sqrt x }} - \frac{{2\left( {\sqrt x  - 2} \right)}}{{\sqrt x \left( {\sqrt x  - 2} \right)}}} \right]\]

\[ = \left[ {\frac{{4\sqrt x \left( {2 - \sqrt x } \right) + 8x}}{{4 - x}}} \right]:\left[ {\frac{{\sqrt x  - 1 - 2\left( {\sqrt x  - 2} \right)}}{{x - 2\sqrt x }}} \right] = \left( {\frac{{8\sqrt x  + 4x}}{{4 - x}}} \right):\left( {\frac{{3 - \sqrt x }}{{x - 2\sqrt x }}} \right)\]

\( = \left[ {\frac{{4\sqrt x \left( {\sqrt x  + 2} \right)}}{{\left( {2 - \sqrt x } \right)\left( {2 + \sqrt x } \right)}}} \right].\left( {\frac{{x - 2\sqrt x }}{{3 - \sqrt x }}} \right) = \left( {\frac{{4\sqrt x }}{{2 - \sqrt x }}} \right).\left[ {\frac{{\sqrt x \left( {\sqrt x  - 2} \right)}}{{3 - \sqrt x }}} \right] = \frac{{4x}}{{\sqrt x  - 3}}\)

Vậy \(P = \frac{{4x}}{{\sqrt x  - 3}}\)

Cách 2: Đặt \(a = \sqrt x \) \(a \ge 0\)

Ta có: \(P = \left( {\frac{{4a}}{{2 + a}} + \frac{{8{a^2}}}{{4 - {a^2}}}} \right):\left( {\frac{{a - 1}}{{{a^2} - 2a}} - \frac{2}{a}} \right)\)

\( = \left[ {\frac{{4a\left( {2 - a} \right)}}{{\left( {2 + a} \right)\left( {2 - a} \right)}} + \frac{{8{a^2}}}{{\left( {2 + a} \right)\left( {2 - a} \right)}}} \right]:\left[ {\frac{{a - 1}}{{a\left( {a - 2} \right)}} - \frac{{2\left( {a - 2} \right)}}{{a\left( {a - 2} \right)}}} \right]\)

\( = \frac{{4a\left( {2 - a} \right) + 8{a^2}}}{{\left( {2 + a} \right)\left( {2 - a} \right)}}:\frac{{a - 1 - 2\left( {a - 2} \right)}}{{a\left( {a - 2} \right)}} = \frac{{4{a^2} + 8a}}{{\left( {2 + a} \right)\left( {2 - a} \right)}}:\frac{{3 - a}}{{a\left( {a - 2} \right)}}\)

\( = \frac{{4a\left( {a + 2} \right)}}{{\left( {2 + a} \right)\left( {2 - a} \right)}}.\frac{{a\left( {a - 2} \right)}}{{3 - a}} = \frac{{4{a^2}}}{{a - 3}} = \frac{{4x}}{{\sqrt x  - 3}}\)

Nhận xét. Bài toán rút gọn biểu thức áp dụng phương pháp phân tích đa thức thành nhân tử.

2) Ta có: \(m\left( {\sqrt x  - 3} \right)P > x + 1 \Leftrightarrow m\left( {\sqrt x  - 3} \right).\frac{{4x}}{{\sqrt x  - 3}} > x + 1\)

\( \Leftrightarrow 4mx > x + 1 \Leftrightarrow \left( {4m - 1} \right)x > 1 \Leftrightarrow \left\{ \begin{array}{l}4m - 1 > 0 \Leftrightarrow m < \frac{1}{4}\\x > \frac{1}{{4m - 1}}\,\,\left( * \right)\end{array} \right.\)

Giải (*), do \(x > 9 \Leftrightarrow \frac{1}{{4m - 1}} > 9 \Leftrightarrow \frac{1}{9} > 4m - 1 \Leftrightarrow \frac{5}{{18}} > m\)

Như vậy \(\frac{1}{4} < m < \frac{5}{{18}}\).

Nhận xét: Bài toán tìm điều kiện của tham số để biến thỏa mãn một bất đẳng thức trước

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP