Câu hỏi:

13/07/2024 12,047 Lưu

Trong một cuộc thi nghề, người ta ghi lại thời gian hoàn thành một sản phẩm của một số thí sinh ở bảng sau:  

Media VietJack

a) Hãy tìm số trung bình, tứ phân vị và mốt của thời gian thi nghề của các thí sinh trên.

b) Năm ngoái, thời gian thi của các thí sinh có số trung bình và trung vị đều bằng 7. Bạn hãy so sánh thời gian thi nói chung của các thí sinh trong hai năm.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Cỡ mẫu là n = 1 + 3 + 5 + 2 + 1 = 12.

Số trung bình là: x¯=1.5+3.6+5.7+2.8+1.35129,08.

Số thí sinh là trong thời gian 7 phút là nhiều nhất nên mốt của mẫu là Mo = 7.

Sắp xếp các giá trị của mẫu theo thứ tự không giảm, ta được:

5; 6; 6; 6; 7; 7; 7; 7; 7; 8; 8; 35.

Vì cỡ mẫu là số chẵn nên tứ phân vị thứ hai là Q2 = 12(7+7)=7.

Tứ phân vị thứ nhất là trung vị của mẫu: 5; 6; 6; 6; 7; 7. Do đó Q1 = 6.

Tứ phân vị thứ ba là trung vị của mẫu: 7; 7; 7; 8; 8; 35. Do đó Q3 = 7,5.

b) Dựa theo số trung bình, vì 9,08 > 7 nên thời gian thi của các thí sinh năm nay nhiều hơn năm ngoái.

Dựa theo trung vị, thì cả hai năm trung vị đều bằng nhau và bằng 7 nên thời gian của các thí sinh trong hai năm là ngang nhau.

Vì trong mẫu số liệu của năm nay có số liệu 35 lớn hơn so với các số liệu còn lại rất nhiều, do đó ta dùng trung vị để so sánh sẽ phù hợp hơn.

Vậy thời gian thi nói chung của các thí sinh trong hai năm là ngang nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Bảng số liệu là bảng tần số.

Cỡ mẫu là n = 6 + 8 + 10 + 6 + 4 + 3 = 37.

Số trung bình của mẫu là:

x¯=6.23+8.25+10.28+6.31+4.33+3.373728,3.

Giá trị 28 có tần số lớn nhất nên mốt của mẫu là Mo = 28.

Sắp xếp mẫu số liệu theo thứ tự không giảm, ta được:

23; 23; 23; 23; 23; 23; 25; 25; 25; 25; 25; 25; 25; 25; 28; 28; 28; 28; 28; 28; 28; 28; 28; 28; 31; 31; 31; 31; 31; 31; 33; 33; 33; 33; 37; 37; 37.

Vì cỡ mẫu là số lẻ nên tứ phân vị thứ hai là Q2 = 28.

Tứ phân vị thứ nhất là trung vị của mẫu: 23; 23; 23; 23; 23; 23; 25; 25; 25; 25; 25; 25; 25; 25; 28; 28; 28; 28. Do đó Q­1 = 25.

Tứ phân vị thứ ba là trung vị của mẫu: 28; 28; 28; 28; 28; 31; 31; 31; 31; 31; 31; 33; 33; 33; 33; 37; 37; 37. Do đó Q3 = 31.

b) Bảng số liệu là bảng tần số tương đối.

Số trung bình là: x¯=0,6.0+0,2.2+0,1.4+0,1.5=1,3.

Tần số tương đối là tỉ số của tần số với cỡ mẫu, do đó, giá trị có tần số tương đối lớn nhất thì có tần số lớn nhất, vậy giá trị 0 có tần số lớn nhất nên mốt của mẫu số liệu là Mo = 0.

Giả sử cỡ mẫu là n = 10, khi đó:

Tần số của giá trị 0 là 0,6 . 10 = 6.

Tần số của giá trị 2 là 0,2 . 10 = 2.

Tần số của giá trị 4 là 0,1 . 10 = 1.

Tần số của giá trị 5 là 0,1 . 10 = 1.

Sắp xếp các số liệu theo thứ tự không giảm, ta được:

0; 0; 0; 0; 0; 0; 2; 2; 4; 5.

Vì cỡ mẫu là số chẵn nên tứ phân vị thứ hai là Q2 = 0.

Tứ phân vị thứ nhất là trung vị của mẫu: 0; 0; 0; 0; 0. Do đó Q1 = 0.

Tứ phân vị thứ ba là trung vị của mẫu: 0; 2; 2; 4; 5. Do đó Q3 = 2.

Lời giải

Bảng số liệu trên được cho dưới dạng bảng tần số.

Số trận đấu trong toàn mùa giải hay chính là cỡ mẫu là:

n = 5 + 10 + 5 + 3 + 2 + 1 = 26 (trận)

Số bàn thắng trung bình của đội đó ghi được trong một trận đấu của mùa giải là:

x¯=5.0+10.1+5.2+3.3+2.4+1.6261,65.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP