Câu hỏi:

20/06/2022 667

Tập nghiệm của phương trình (x2+25)(x294)=0 là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: (x2+25)(x294)=0

Û x2 + 25 = 0 hoặc x294=0

x294=0 (vì x2 + 25 > 0 x)

x=±32.

Do đó, tập nghiệm của phương trình đã cho là  S={±32}.

Vậy chọn đáp án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình thang ABCD (AB // CD). Gọi O là giao điểm của hai đường chéo AC và BD. Qua O kẻ đường thẳng song song với AB, cắt AD và BC theo thứ tự ở E và G. a) Chứng minh: OA . OD = OB . OC. (ảnh 1)

a) Ta có AB // CD, áp dụng định lý Ta-let: OAOC=OBOD.

Do đó: OA . OD = OB . OC (đpcm).

b) Từ câu a suy ra: OAOC=OBOD=ABCD

OA6=510=12

 

OA=62=3 (cm).

Do OE // DC nên theo hệ quả định lí Ta-let:

AEAC=AOAC=EODC

33+6=EO10

EO=3.  109=103 (cm).

 

Vậy OA = 3 cm, EO=103 cm.

c) Do OE // AB, theo hệ quả định lý Ta-lét ta có: OEAB=DEDA  (1)

Do OE // CD, theo hệ quả định lý Ta-lét ta có: OEDC=AEDA  (2)

Cộng vế theo vế của (1) và (2) ta được: OEAB+OEDC=DEDA+AEDA=1.

Suy ra OE  (1AB+1CD)=1 hay 1OE=1AB+1CD (*)

Chứng minh tương tự, ta có: 1OG=1AB+1DC (**)

Từ (*) và (**) suy ra: 1OE=1OG=1AB+1CD (đpcm).

Lời giải

Một hình lăng trụ đứng có đáy là tam giác vuông (như hình vẽ). Độ dài hai cạnh góc vuông của đáy là 5 cm, 12 cm, chiều cao của lăng trụ là 8cm. Tính diện tích xung quanh và thể tích của hình lăng trụ đó.  (ảnh 2)

Độ dài hai cạnh góc vuông của đáy là 5 cm, 12 cm nên ∆ABC vuông tại B.

Theo định lý Py-ta-go, ta có:

AC=AB2+BC2=52+122=13 (cm).

Diện tích xung quanh của lăng trụ là:

(5 + 12 + 13) . 8 = 240 (cm2).

Diện tích một đáy của lăng trụ là:

12.  5  .  12=30 (cm2).

Thể tích của lăng trụ là:

30 . 8 = 240 (cm3).

Vậy hình lăng trụ có diện tích xung quanh là 240 cm2 và có thể tích là 240 cm3.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP