Câu hỏi:
06/12/2021 89,521Có thể chia một khối lập phương thành bao nhiêu khối tứ diện có thể tích bằng nhau mà các đỉnh của tứ diện cũng là đỉnh của hình lập phương?
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Ta chia hình lập phương thành 6 khối tứ diện bằng nhau như sau:
+) Chia khối lập phương ABCD. A’B’C’D’ thành hai khối lăng trụ tam giác bằng nhau: ABC.A’B’C’ và BCD.B’C’D’.
+) Tiếp đó, lần lượt chia khối lăng trụ ABD.A’B’D’ và BCD.B’C’D’ thành ba tứ diện: DABB’, DAA’B’ và DCBB’, DCC’B’, DD’C’B’.
+ Ta chứng minh được các khối tứ diện này bằng nhau như sau:
- Hai khối tứ diện DABB’ và DAA’B’ bằng nhau vì chúng đối xứng nhau qua mặt phẳng (DAB’) (1)
- Hai khối tứ diện DAA’B’ và DD’A’B’ bằng nhau vì chúng đối xứng nhau qua mặt phẳng (B’A’D) (2)
Từ (1) và (2) suy ra ba khối tứ diện DABB’, DAA’B’ và DD’A’B’ bằng nhau.
- Tương tự, ba khối tứ diện DCBB’, DCC’B’, DD’C’B’ cũng bằng nhau.
Vậy khối lập phương ABCD.A’B’C’D’ được chia thành sáu khối tứ diện bằng nhau.
Chọn D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình bát diện đều cạnh a. Gọi S là tổng diện tích tất cả các mặt của hình bát diện đó. Tính S.
Câu 3:
Cắt khối trụ bởi các mặt phẳng và ta được những khối đa diện nào?
Câu 4:
Một hình đa diện có các mặt là các tam giác có số mặt M và số cạnh C của đa diện đó thỏa mãn hệ thức nào dưới đây
Câu 6:
Số mặt phẳng cách đều tất cả các đỉnh của một hình lăng trụ tam giác là
về câu hỏi!