Câu hỏi:

21/06/2022 346

II. Tự luận:

Điểm thi học kỳ I môn Sinh học của các bạn học của lớp 7A được thống kê trong bảng “tần số” sau:

Điểm (x)

4

5

6

7

8

9

10

 

Tần số (n)

3

4

4

8

5

7

1

N = 32

a) Tìm mốt của dấu hiệu trong bảng “tần số “trên? Giải thích tại sao?

b) Tính điểm trung bình của lớp 7A.

c) Nêu nhận xét.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Mốt của dấu hiệu: 7.

Vì tần số của điểm 7 là lớn nhất (tần số của điểm 7 là 8).

b) Điểm trung bình cộng:

\(\overline X = \frac{{4\,.\,3 + 5\,.\,4 + 6\,.\,4 + 7\,.\,8 + 8\,.\,5 + 9\,.\,7 + 10\,.\,1}}{{32}} \approx 7,03\).

Vậy điểm trung bình học kỳ I môn Sinh học của lớp 7A là 7,03.

c) Nhận xét:

- Số các giá trị của dấu hiệu là 32.

- Số các giá trị khác nhau là 7.

- Giá trị lớn nhất là 10; giá trị nhỏ nhất là 4.

- Giá trị có tần số lớn nhất 7 (tần số của giá trị 7 là 8).

- Các giá trị thuộc vào khoảng 7 điểm đến 9 điểm là chủ yếu.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

GT

ABC vuông tại A, \[\widehat B = {60^o}\], AB = 5cm.

BD là tia phân giác \(\widehat {ABC}\) (\(D \in AC\)).

\(DE \bot BC\,\,(E \in BC)\).

KL

a) ∆ADB = ∆BDE.

b) ∆AEB là tam giác đều.

c) Tính BC.

Cho tam giác ABC vuông tại A, góc B = 60^o, AB = 5cm. Tia phân giác góc B cắt AC tại D. Từ D kẻ đường thẳng vuông góc với BC tại E. a) Chứng minh: ∆ADB = ∆BDE. b) Chứng minh tam giác AEB là tam giác đều. c) Tính BC. (ảnh 1)

a) Xét ∆ABD vuông tại A và ∆BDE vuông tại E có:

BD cạnh chung.

\[\widehat {ABD} = \widehat {DBE} = {30^o}\](BD là phân giác góc B)

Do đó ∆ADB = ∆BDE (cạnh huyền – góc nhọn).

b) Từ câu a: ∆ADB = ∆BDE suy ra AB = BE.

Xét ∆ABE có AB = BE, \(\widehat B = {60^o}\).

Vậy ∆ABE là tam giác đều.

c) Ta có ∆ABE là tam giác đều (câu b)

Suy ra AB = BE = AE = 5 cm   (*)

Do đó \[\widehat {BAE} = \widehat {ABE} = {60^o}\]

Mặt khác \[\widehat {BAC} = {90^o}\]

\[ \Rightarrow \widehat {EAC} = \widehat {BAC} - \widehat {BAE} = {90^o} - {60^o} = {30^o}\] (1)

Áp dụng định lý tổng ba góc của một tam giác vào ∆ABC, ta có:

\[\widehat {ABC} + \widehat {BCA} + \widehat {BAC} = {180^o}\]

\[ \Rightarrow \widehat {BCA} = {180^o} - \widehat {ABC} - \widehat {BAC}\]

\[ \Rightarrow \widehat {BCA} = {180^o} - {60^o} - {90^o} = {30^o}\] (2)

Từ (1) và (2) suy ra \[\widehat {EAC} = \widehat {BCA}\] nên ∆AEC cân tại E.

Suy ra AC = EC = 5 cm   (**)

Từ (*) và (**) suy ra BC = BE + EC = 5 + 5 = 10 (cm).

Vậy BC = 10 cm.

Lời giải

a) Ta có: \[A = \left( {\frac{{ - 1}}{2}{x^2}{y^3}z} \right)\,\,.\,\,\left( {\frac{{ - 14}}{3}x{y^2}{z^2}} \right)\]

\[ = \left( {\frac{{ - 1}}{2}\,.\,\,\frac{{ - 14}}{3}} \right).\,\left( {{x^2}.\,x} \right).\,\left( {{y^3}.\,{y^2}} \right)\left( {z\,.\,{z^2}} \right)\]

\[ = \frac{7}{3}\,.\,{x^{2\, + \,1}}.\,\,{y^{3\, + \,2}}.\,{z^{1\, + \,2}}\]

\[ = \frac{7}{3}{x^3}{y^5}{z^3}\].

Vậy \[A = \frac{7}{3}{x^3}{y^5}{z^3}\].

b) Đơn thức A có hệ số là \[\frac{7}{3}\].

Đơn thức \[\frac{7}{3}{x^3}{y^5}{z^3}\], biến x có số mũ là 3; biến y có số mũ là 5; biến z có số mũ là 3.

Tổng số mũ của các biến là 3 + 5 + 3 = 11.

Vậy đơn thức A có hệ số là \[\frac{7}{3}\] và có bậc là 11.

c) Thay x = 1; y = −1; z = 2 vào biểu thức A, ta được:

\[A = \frac{7}{3}{x^3}{y^5}{z^3} = \frac{7}{3}\,.\,{1^3}\,.\,{( - 1)^5}\,.\,{2^3} = - \frac{{56}}{3}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Thêm điều kiện nào để tam giác ABC bằng tam giác DEF theo trường hợp cạnh – góc – cạnh, biết AC = DF, BC = EF?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Điểm nào sau đây thuộc đồ thị hàm số y = f(x) = −3x?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay