Câu hỏi:
13/07/2024 3,498
Một giáo viên thể dục đo chiều cao (tính theo cm) của một nhóm học sinh nam và ghi lại ở bảng sau:
138
141
145
145
139
141
138
141
139
141
140
150
140
141
140
143
145
139
140
143
a) Lập bảng “tần số”.
b) Thầy giáo đã đo chiều cao bao nhiêu bạn?
c) Số bạn có chiều cao thấp nhất là bao nhiêu?
d) Có bao nhiêu bạn có chiều cao 143 cm?
e) Số các giá trị khác nhau của dấu hiệu là bao nhiêu?
f) Chiều cao của các bạn chủ yếu thuộc vào khoảng nào?
Một giáo viên thể dục đo chiều cao (tính theo cm) của một nhóm học sinh nam và ghi lại ở bảng sau:
138 |
141 |
145 |
145 |
139 |
141 |
138 |
141 |
139 |
141 |
140 |
150 |
140 |
141 |
140 |
143 |
145 |
139 |
140 |
143 |
a) Lập bảng “tần số”.
b) Thầy giáo đã đo chiều cao bao nhiêu bạn?
c) Số bạn có chiều cao thấp nhất là bao nhiêu?
d) Có bao nhiêu bạn có chiều cao 143 cm?
e) Số các giá trị khác nhau của dấu hiệu là bao nhiêu?
f) Chiều cao của các bạn chủ yếu thuộc vào khoảng nào?
Câu hỏi trong đề: Đề kiểm tra Giữa kì 2 Toán 7 có đáp án (Mới nhất) !!
Quảng cáo
Trả lời:
a) Bảng “tần số”:
Chiều cao (x) |
138 |
139 |
140 |
141 |
143 |
145 |
150 |
|
Tần số (n) |
2 |
3 |
4 |
5 |
2 |
3 |
1 |
N = 20 |
b) Thầy giáo đã đo chiều cao của 20 bạn.
c) Số bạn có chiều cao thấp nhất là hai bạn.
d) Có hai bạn cao 143 cm.
e) Số các giá trị khác nhau của dấu hiệu là 7.
f) Chiều cao của các bạn chủ yếu thuộc vào khoảng 140 cm đến 141 cm.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
GT |
\(\widehat {xOy}\) nhọn; lấy \(A \in {\rm{Ox}}\), \(B \in Oy\): OA = OB. OI là tia phân giác \(\widehat {xOy}\) (\(I \in AB\)). Điểm C nằm giữa hai điểm O và I; OA = 5 cm, AB = 6cm. |
KL |
a) IA = IB. b) ΔABC là tam giác cân. c) Tính độ dài OI. |

a) Xét ΔOIA và ΔOIB có:
OA = OB (gt)
\[{\widehat O_1} = {\widehat O_2}\] (vì OI là tia phân giác \(\widehat {xOy}\))
Cạnh OI chung.
Do đó ΔOIA = ΔOIB (c.g.c)
Suy ra IA = IB (hai cạnh tương ứng).
b) Xét ΔOCA và ΔOCB có:
OA = OB (gt)
\[{\widehat O_1} = {\widehat O_2}\] (vì OI là tia phân giác \(\widehat {xOy}\))
Cạnh OC chung.
Do đó ΔOCA = ΔOCB (c.g.c)
Do đó CA = CB (hai cạnh tương ứng)
Vậy tam giác ABC cân tại A.
c) ΔOBC có OI là đường trung tuyến cũng là đường phân giác, đường cao.
Áp dụng định lý Py-ta-go vào ΔAOI vuông tại I, ta có:
OA2 = OI2 + IA2
Suy ra: OI2 = OA2 – IA2 = 52 – 32 = 25 – 9 = 16
Do đó: .
Lời giải
Với n ≠ 2, ta có: \(A = \frac{{3n + 1}}{{n - 2}} = \frac{{3(n - 2) + 7}}{{n - 2}} = 3 + \frac{7}{{n - 2}}\)
Để biểu thức A đạt giá trị nguyên hay \(3 + \frac{7}{{n - 2}} \in \mathbb{Z}\) thì \(\frac{7}{{n - 2}} \in \mathbb{Z}\).
Khi đó, n – 2 \( \in \) Ư(7) = {–1; 1; –7; 7}.
Ta có bảng sau:
n – 2 |
–1 |
1 |
–7 |
7 |
n |
1 (TM) |
3 (TM) |
–5 (loại vì \(n \in \mathbb{N}\)) |
9 (TM) |
Vậy để biểu thức A đạt giá trị nguyên thì n \( \in \) {1; 3; 9}.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.