Câu hỏi:

13/07/2024 263

Cho \(A = \frac{{3n + 1}}{{n - 2}}\) (n ≠ 2). Tìm \(n \in \mathbb{N}\) để biểu thức A đạt giá trị nguyên.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Với n ≠ 2, ta có: \(A = \frac{{3n + 1}}{{n - 2}} = \frac{{3(n - 2) + 7}}{{n - 2}} = 3 + \frac{7}{{n - 2}}\)

Để biểu thức A đạt giá trị nguyên hay \(3 + \frac{7}{{n - 2}} \in \mathbb{Z}\) thì \(\frac{7}{{n - 2}} \in \mathbb{Z}\).

Khi đó, n – 2 \( \in \) Ư(7) = {–1; 1; –7; 7}.

Ta có bảng sau:

n – 2

–1

1

–7

7

n

1 (TM)

3 (TM)

–5 (loại vì \(n \in \mathbb{N}\))

9 (TM)

Vậy để biểu thức A đạt giá trị nguyên thì n \( \in \) {1; 3; 9}.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho góc nhọn xOy. Trên hai cạnh Ox và Oy lần lượt lấy hai điểm A và B sao cho OA = OB. Tia phân giác góc xOy cắt AB tại I.

a) Chứng minh: IA = IB.

b) Gọi C nằm giữa hai điểm O và I. Chứng minh tam giác ABC là tam giác cân.

c) Giả sử OA = 5 cm, AB = 6 cm. Tính độ dài OI.

Xem đáp án » 13/07/2024 6,717

Câu 2:

 Một giáo viên thể dục đo chiều cao (tính theo cm) của một nhóm học sinh nam và ghi lại ở bảng sau:

138

141

145

145

139

141

138

141

139

141

140

150

140

141

140

143

145

139

140

143

a) Lập bảng “tần số”.

b) Thầy giáo đã đo chiều cao bao nhiêu bạn?

c) Số bạn có chiều cao thấp nhất là bao nhiêu?

d) Có bao nhiêu bạn có chiều cao 143 cm?             

e) Số các giá trị khác nhau của dấu hiệu là bao nhiêu?

f) Chiều cao của các bạn chủ yếu thuộc vào khoảng nào?

Xem đáp án » 13/07/2024 465

Câu 3:

Cho các đơn thức sau: \[A = 2{x^3}{y^4}\left( {\frac{1}{3}{x^2}y{z^3}} \right)\]\(B = - \frac{1}{3}{x^5}{y^5}{z^3}\).

a) Thu gọn đơn thức A và cho biết hệ số, phần biến số.    

b) Tính A + B và B – A.

Xem đáp án » 13/07/2024 261

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store