Câu hỏi:
13/07/2024 263Cho \(A = \frac{{3n + 1}}{{n - 2}}\) (n ≠ 2). Tìm \(n \in \mathbb{N}\) để biểu thức A đạt giá trị nguyên.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Với n ≠ 2, ta có: \(A = \frac{{3n + 1}}{{n - 2}} = \frac{{3(n - 2) + 7}}{{n - 2}} = 3 + \frac{7}{{n - 2}}\)
Để biểu thức A đạt giá trị nguyên hay \(3 + \frac{7}{{n - 2}} \in \mathbb{Z}\) thì \(\frac{7}{{n - 2}} \in \mathbb{Z}\).
Khi đó, n – 2 \( \in \) Ư(7) = {–1; 1; –7; 7}.
Ta có bảng sau:
n – 2 |
–1 |
1 |
–7 |
7 |
n |
1 (TM) |
3 (TM) |
–5 (loại vì \(n \in \mathbb{N}\)) |
9 (TM) |
Vậy để biểu thức A đạt giá trị nguyên thì n \( \in \) {1; 3; 9}.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho góc nhọn xOy. Trên hai cạnh Ox và Oy lần lượt lấy hai điểm A và B sao cho OA = OB. Tia phân giác góc xOy cắt AB tại I.
a) Chứng minh: IA = IB.
b) Gọi C nằm giữa hai điểm O và I. Chứng minh tam giác ABC là tam giác cân.
c) Giả sử OA = 5 cm, AB = 6 cm. Tính độ dài OI.
Câu 2:
Một giáo viên thể dục đo chiều cao (tính theo cm) của một nhóm học sinh nam và ghi lại ở bảng sau:
138 |
141 |
145 |
145 |
139 |
141 |
138 |
141 |
139 |
141 |
140 |
150 |
140 |
141 |
140 |
143 |
145 |
139 |
140 |
143 |
a) Lập bảng “tần số”.
b) Thầy giáo đã đo chiều cao bao nhiêu bạn?
c) Số bạn có chiều cao thấp nhất là bao nhiêu?
d) Có bao nhiêu bạn có chiều cao 143 cm?
e) Số các giá trị khác nhau của dấu hiệu là bao nhiêu?
f) Chiều cao của các bạn chủ yếu thuộc vào khoảng nào?
Câu 3:
Cho các đơn thức sau: \[A = 2{x^3}{y^4}\left( {\frac{1}{3}{x^2}y{z^3}} \right)\] và \(B = - \frac{1}{3}{x^5}{y^5}{z^3}\).
a) Thu gọn đơn thức A và cho biết hệ số, phần biến số.
b) Tính A + B và B – A.
về câu hỏi!