Câu hỏi:

13/07/2024 327

Cho các đơn thức sau: \[A = 2{x^3}{y^4}\left( {\frac{1}{3}{x^2}y{z^3}} \right)\]\(B = - \frac{1}{3}{x^5}{y^5}{z^3}\).

a) Thu gọn đơn thức A và cho biết hệ số, phần biến số.    

b) Tính A + B và B – A.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Ta có \[A = 2{x^3}{y^4}\left( {\frac{1}{3}{x^2}y{z^3}} \right) = \left( {2\,.\,\frac{1}{3}} \right)\,.\,({x^3}\,.\,{x^2})\,.\,({y^4}\,.\,y)\,.\,{z^3}\]\[ = \frac{2}{3}{x^5}{y^5}{z^3}\]

Vậy đơn thức A sau khi thu gọn là \(\frac{2}{3}{x^5}{y^5}{z^3}\) có hệ số là \(\frac{2}{3}\) và phần biến số là x5y5z3.

b) Ta có A + B = \[{x^5}{y^5}{z^3} + \left( { - \frac{1}{3}{x^5}{y^5}{z^3}} \right) = \left( {1 - \frac{1}{3}} \right){x^5}{y^5}{z^3} = \frac{2}{3}{x^5}{y^5}{z^3}\].

B – A = \[ - \frac{1}{3}{x^5}{y^5}{z^3} - {x^5}{y^5}{z^3} = \left( { - \frac{1}{3} - 1} \right){x^5}{y^5}{z^3} = - \frac{4}{3}{x^5}{y^5}{z^3}\].

Vậy \[A + B = \frac{2}{3}{x^5}{y^5}{z^3}\]; \[B - A = - \frac{4}{3}{x^5}{y^5}{z^3}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

GT

\(\widehat {xOy}\) nhọn; lấy \(A \in {\rm{Ox}}\), \(B \in Oy\): OA = OB.

OI là tia phân giác \(\widehat {xOy}\) (\(I \in AB\)).

Điểm C nằm giữa hai điểm O và I;

OA = 5 cm, AB = 6cm.

KL

a) IA = IB.

b) ΔABC là tam giác cân.

c) Tính độ dài OI.

 Cho góc nhọn xOy. Trên hai cạnh Ox và Oy lần lượt lấy hai điểm A và B sao cho OA = OB.  (ảnh 1)

a) Xét ΔOIA và ΔOIB có:

OA = OB (gt)

\[{\widehat O_1} = {\widehat O_2}\] (vì OI là tia phân giác \(\widehat {xOy}\))

Cạnh OI chung.

Do đó ΔOIA = ΔOIB (c.g.c)  

Suy ra IA = IB (hai cạnh tương ứng).

b) Xét ΔOCA và ΔOCB có:

OA = OB (gt)

\[{\widehat O_1} = {\widehat O_2}\] (vì OI là tia phân giác \(\widehat {xOy}\))

Cạnh OC chung.

Do đó ΔOCA = ΔOCB (c.g.c)  

Do đó CA = CB (hai cạnh tương ứng)

Vậy tam giác ABC cân tại A.

c) ΔOBC có OI là đường trung tuyến cũng là đường phân giác, đường cao.

Áp dụng định lý Py-ta-go vào ΔAOI vuông tại I, ta có:

OA2 = OI2 + IA2                                                                                             

Suy ra: OI2 = OA2 – IA2 = 52 – 32 = 25 – 9 = 16

Do đó: OI=16=4(cm).

Lời giải

a) Bảng “tần số”:

Chiều cao (x)

138

139

140

141

143

145

150

 

Tần số (n)

2

3

4

5

2

3

1

N = 20

b) Thầy giáo đã đo chiều cao của 20 bạn.

c) Số bạn có chiều cao thấp nhất là hai bạn.

d) Có hai bạn cao 143 cm.

e) Số các giá trị khác nhau của dấu hiệu là 7.

f) Chiều cao của các bạn chủ yếu thuộc vào khoảng 140 cm đến 141 cm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP