Câu hỏi:
13/07/2024 390Cho ∆ABC có AB = AC; D là điểm bất kì trên cạnh AB. Tia phân giác của góc A cắt cạnh DC ở M, cắt cạnh BC ở I.
a) Chứng minh CM = BM.
b) Chứng minh AI là đường trung trực của đoạn thẳng BC.
c) Từ D kẻ . Chứng minh .
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Chứng minh CM = BM.
Xét và có:
AB = AC (gt)
(vì AM là tia phân giác của )
AM là cạnh chung.
Do đó
Suy ra BM = CM (hai cạnh tương ứng)
b) Chứng minh: AI là đường trung trực của đoạn thẳng BC.
Xét và có:
AB = AC (gt)
(Vì AI là tia phân giác của ).
AI là cạnh chung.
Do đó
Suy ra BI = CI (hai cạnh tương ứng) (1)
Và (hai góc tương ứng).
Mà (hai góc kề bù).
Nên
Suy ra (2)
Từ (1) và (2) suy ra: AI là đường trung trực của đoạn thẳng BC.
c) Chứng minh .
Ta có:
(cmt)
Suy ra DH // AI (quan hệ giữa tính vuông góc với tính song song).
(hai góc đồng vị) (3)
Ta lại có: (vì AI là tia phân giác của ) (4)
Từ (3) và (4) suy ra .
Vậy .
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 3:
Tìm giá trị lớn nhất của biểu thức:
A = |x – 1004| – |x + 1003|.
Câu 5:
Số học sinh lớp 7A, 7B, 7C tỉ lệ với các số 17; 18; 16. Biết rằng tổng số học sinh của cả ba lớp là 102 học sinh. Tính số học sinh của mỗi lớp.
về câu hỏi!