Câu hỏi:

19/08/2025 585 Lưu

Cho 1c=12(1a+1b) (với a, b, c ≠ 0, b ≠ c). Chứng minh

rằng: ab=accb.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

1c=12(1a+1b) (với a, b, c ≠ 0, b ≠ c)

1c=a+b2ab

 2ab = a(a + b)

 2ab = ac + bc

 ab + ab = ac + bc

 ab – bc = ac – ab

 b(a – c) = a(c – b)

ab=accb

Vậy ab=accb.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. 2

B. 4

C. ± 2

D. 16

Lời giải

Đáp án D

Ta có x=4 suy ra x = 42 = 16.

Lời giải

Cho góc nhọn xOy. Trên tia Ox lấy điểm A và C sao cho OA < OC, trên tia Oy lấy điểm B và D sao cho OA = OB ; OC = OD. Gọi E là giao điểm của AD và BC. a) Chứng minh: AD = BC. b) Chứng minh: ∆EAC = ∆EBD. c) Chứng minh: OE là tia phân giác của góc xOy. (ảnh 1)

a) Chứng minh: AD = BC.

Xét OAD và OBC có:

OA = OB (gt);

AOD^ chung;

OD = OC (gt)

Do đó OAD = OBC (c.g.c)

Suy ra AD = BC (hai cạnh tương ứng)

b) Chứng minh: ∆EAC = ∆EBD.

Vì ∆OAD = ∆OBC (câu a)

Nên A^2=B^2 (hai góc tương ứng)

A^1+A^2=180o, B^1+B^2=180o (kề bù)

Do đó A^1=B^1.

Mặt khác, OA = OB, OC = OD

Suy ra OC – OA = OD – OB

Do đó AC = BD

Xét ∆EAC và ∆EBD có:

A^1=B^1 (cmt);

AC = BD (cmt);

OCB^=ODA^ (vì ∆OAD = ∆OBC)

Do đó ∆EAC = ∆EBD (g.c.g).

c) Chứng minh: OE là tia phân giác của góc xOy.

Vì ∆EAC = ∆EBD (câu b)

Nên AE = BE (hai cạnh tương ứng).

Xét ∆OAE và ∆OBE có:

OA = OB (gt);

Cạnh OE chung;

AE = BE (cmt)

Do đó OAE và OBE (c.c.c)

Suy ra AOE^=BOE^ (hai góc tương ứng)

Hay OE là phân giác của góc xOy.

Câu 3

A. (−1; −3)

B. (−1; 3)

C. (−2; 1)

D. (−2; −1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP