Câu hỏi:
13/07/2024 17,305Theo Google Maps, sân bay Nội Bài có vĩ độ 21,2° Bắc, kinh độ 105,8° Đông, sân bay Đà Nẵng có vĩ độ 16,1° Bắc, kinh độ 108,2° Đông. Một máy bay, bay từ sân bay Nội Bài đến sân bay Đà Nẵng. Tại thời điểm t giờ, tính từ lúc xuất phát, máy bay ở vị trí có vĩ độ x° Bắc, kinh độ y° Đông được tính theo công thức
\(\left\{ \begin{array}{l}x = 21,2 - \frac{{153}}{{40}}t\\y = 105,8 + \frac{9}{5}t\end{array} \right.\).
a) Hỏi chuyến bay từ Hà Nội đến Đà Nẵng mất mấy giờ?
b) Tại thời điểm 1 giờ kể từ lúc cất cánh, máy bay đã bay qua vĩ tuyến 17 (17° Bắc) chưa?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Tại sân bay Nội Bài, máy bay bắt đầu bay ứng với thời gian t = 0.
Tọa độ của sân bay Đà Nẵng thỏa mãn hệ \(\left\{ \begin{array}{l}x = 21,2 - \frac{{153}}{{40}}t\\y = 105,8 + \frac{9}{5}t\end{array} \right.\).
Do đó, thời gian máy bay bay từ Hà Nội đến Đà Nẵng là nghiệm t của hệ \(\left\{ \begin{array}{l}16,1 = 21,2 - \frac{{153}}{{40}}t\,\,\,\,\,\,\,\,\,\left( 1 \right)\\108,2 = 105,8 + \frac{9}{5}t\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\).
Từ (1) suy ra t = \(\frac{4}{3}\).
Từ (2) suy ra t = \(\frac{4}{3}\).
Do đó t = \(\frac{4}{3}\) là nghiệm của hệ trên.
Vậy chuyến bay từ Hà Nội đến Đà Nẵng mất \(\frac{4}{3}\) giờ.
b) Tại thời điểm 1 giờ kể từ lúc cất cánh, nghĩa là t = 1, thay vào hệ \(\left\{ \begin{array}{l}x = 21,2 - \frac{{153}}{{40}}t\\y = 105,8 + \frac{9}{5}t\end{array} \right.\) ta được: \(\left\{ \begin{array}{l}x = 21,2 - \frac{{153}}{{40}}.1\\y = 105,8 + \frac{9}{5}.1\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 17,375\\y = 107,6\end{array} \right.\).
Do đó tại thời điểm 1 giờ kể từ lúc cất cánh, máy bay đang ở vị trí có 17,375° Bắc và có kinh độ 107,6° Đông.
Vậy tại thời điểm 1 giờ kể từ lúc cất cánh, máy bay chưa bay qua vĩ tuyến 17 (17° Bắc).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hai đường thẳng ∆1: \(\left\{ \begin{array}{l}x = 1 + 2t\\y = 3 + 5t\end{array} \right.\) và ∆2: 2x + 3y – 5 = 0.
a) Lập phương trình tổng quát của ∆1.
b) lập phương trình tham số của ∆2.
Câu 2:
B. Bài tập
Trong mặt phẳng tọa độ, cho \(\overrightarrow n = \left( {2;\,1} \right),\,\overrightarrow v = \left( {3;\,2} \right),\,A\left( {1;\,3} \right),\,B\left( { - 2;\,1} \right)\).
a) Lập phương trình tổng quát của đường thẳng ∆1 đi qua A và có vectơ pháp tuyến \(\overrightarrow n \).
b) Lập phương trình tham số của đường thẳng ∆2 đi qua B và có vectơ chỉ phương \(\overrightarrow v \).
c) Lập phương trình tham số của đường thẳng AB.
Câu 3:
Câu 5:
a) Lập phương trình đường cao kẻ từ A.
b) Lập phương trình đường trung tuyến kẻ từ B.
Câu 6:
Chuyển động của một vật thể được thể hiện trên mặt phẳng Oxy. Vật thể khởi hành từ A(2; 1) và chuyển động thẳng đều với vectơ vận tốc \(\overrightarrow v \left( {3;4} \right)\).
a) Hỏi vật thể chuyển động trên đường thẳng nào (chỉ ra điểm đi qua và vectơ chỉ phương của đường thẳng đó)?
b) Chứng minh rằng, tại thời điểm t (t > 0) tính từ khi khởi hành, vật thể ở vị trí có tọa độ là (2 + 3t; 1 + 4t).
75 câu trắc nghiệm Vectơ nâng cao (P1)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
28 câu Trắc nghiệm Mệnh đề có đáp án
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
80 câu trắc nghiệm Vectơ cơ bản (P1)
5 câu Trắc nghiệm Phương sai và độ lệch chuẩn có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
50 câu trắc nghiệm Thống kê nâng cao (P1)
về câu hỏi!