Câu hỏi:
13/07/2024 4,153B. Bài tập
Xét vị trí tương đối giữa các cặp đường thẳng sau:
a) ∆1: \(3\sqrt 2 x + \sqrt 2 y - \sqrt 3 = 0\) và ∆2: 6x + 2y\( - \sqrt 6 \) = 0.
b) d1: x \( - \sqrt 3 y\) + 2 = 0 và d2: \(\sqrt 3 \)x – 3y + 2 = 0.
c) m1: x – 2y + 1 = 0 và m2: 3x + y – 2 = 0.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Đường thẳng ∆1: \(3\sqrt 2 x + \sqrt 2 y - \sqrt 3 = 0\)có vectơ pháp tuyến là \({\overrightarrow n _1} = \left( {3\sqrt 2 ;\sqrt 2 } \right)\).
Đường thẳng ∆2: 6x + 2y\( - \sqrt 6 \) = 0 có vectơ pháp tuyến là \({\overrightarrow n _2} = \left( {6;\,\,2} \right)\).
Ta có: \({\overrightarrow n _1} = \frac{{\sqrt 2 }}{2}{\overrightarrow n _2}\) nên hai vectơ \({\overrightarrow n _1}\) và \({\overrightarrow n _2}\) cùng phương, do đó hai đường thẳng ∆1 và ∆2 song song hoặc trùng nhau.
Mặt khác, điểm A\(\left( {0;\frac{{\sqrt 6 }}{2}} \right)\) vừa thuộc ∆1 vừa thuộc ∆2.
Vậy hai đường thẳng ∆1 và ∆2 trùng nhau.
b) Vectơ pháp tuyến của đường thẳng d1: x \( - \sqrt 3 y\) + 2 = 0 là \(\overrightarrow {{n_1}} = \left( {1; - \sqrt 3 } \right)\)và của d2: \(\sqrt 3 \)x – 3y + 2 = 0 là \(\overrightarrow {{n_2}} = \left( {\sqrt 3 ; - 3} \right)\).
Ta có: \(\overrightarrow {{n_2}} = \sqrt 3 \overrightarrow {{n_1}} \) nên hai vectơ \(\overrightarrow {{n_1}} \) và \(\overrightarrow {{n_2}} \) cùng phương, do đó hai đường thẳng d1 và d2 song song hoặc trùng nhau.
Mặt khác, điểm B(– 2; 0) thuộc d1 nhưng không thuộc d2.
Vậy hai đường thẳng d1 và d2 song song với nhau.
c) Xét hệ phương trình \(\left\{ \begin{array}{l}x - 2y + 1 = 0\\3x + y - 2 = 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}3x - 6y + 3 = 0\,\,\,\,\,\,\,\left( 1 \right)\\3x + y - 2 = 0\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\).
Lấy (2) trừ vế theo vế cho (1) ta được: 7y – 5 = 0 \( \Leftrightarrow y = \frac{5}{7}\).
Thay vào (1) ta được: \(3x - 6.\frac{5}{7} + 3 = 0 \Leftrightarrow x = \frac{3}{7}\).
Do đó hệ trên có nghiệm duy nhất \(\left( {\frac{3}{7};\frac{5}{7}} \right)\).
Vậy hai đường thẳng m1 và m2 cắt nhau tại điểm có tọa độ \(\left( {\frac{3}{7};\frac{5}{7}} \right)\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong mặt phẳng tọa độ, cho tam giác ABC có A(1; 0), B(3; 2) và C(– 2; – 1).
a) Tính độ dài đường cao kẻ từ đỉnh A của tam giác ABC.
b) Tính diện tích tam giác ABC.
Câu 2:
Câu 3:
Trong mặt phẳng tọa độ Oxy, cho điểm A(0; – 2) và đường thẳng ∆: x + y – 4 = 0.
a) Tính khoảng cách từ điểm A đến đường thẳng ∆.
b) Viết phương trình đường thẳng a đi qua điểm M(– 1; 0) và song song với ∆.
c) Viết phương trình đường thẳng b đi qua điểm N(0; 3) và vuông góc với ∆.
Câu 4:
Nhân dịp nghỉ hè, Nam về quê ở với ông bà nội. Nhà ông bà nội có một ao cá có dạng hình chữ nhật ABCD với chiều dài AD = 15 m, chiều rộng AB = 12 m. Phần tam giác DEF là nơi ông bà nuôi vịt, AE = 5 m, CF = 6 m (H.7.11).
a) Chọn hệ trục tọa độ Oxy, có điểm O trùng với điểm B, các tia Ox, Oy tương ứng trùng với các tia BC, BA. Chọn 1 đơn vị độ dài trên mặt phẳng tọa độ tương ứng với 1 m trong thực tế. Hãy xác định tọa độ của các điểm A, B, C, D, E, F và viết phương trình đường thẳng EF.
b) Nam đứng ở vị trí B câu cá và có thể quăng lưỡi câu xa 10,7 m. Hỏi lưỡi câu có thể rơi vào nơi nuôi vịt hay không ?
Câu 5:
Câu 6:
Trong mặt phẳng tọa độ, cho hai đường thẳng
∆1: x – 2y + 3 = 0,
∆2: 3x – y – 1 = 0.
a) Điểm M(1; 2) có thuộc cả hai đường thẳng nói trên hay không?
b) Giải hệ \(\left\{ \begin{array}{l}x - 2y + 3 = 0\\3x - y - 1 = 0\end{array} \right.\).
c) Chỉ ra mối quan hệ giữa tọa độ giao điểm của ∆1 và ∆2 với nghiệm của hệ phương trình trên.
Câu 7:
∆1: x + 3y + 2 = 0 và ∆2: y = 3x + 1.
về câu hỏi!