Câu hỏi:

12/07/2024 19,019

Trong mặt phẳng tọa độ, một tín hiệu âm thanh phát đi từ một vị trí và được ba thiết bị ghi tín hiệu đặt tại ba vị trí O(0; 0), A(1; 0), B(1; 3) nhận được cùng một thời điểm. Hãy xác định vị trí phát tín hiệu âm thanh.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Gọi H(a; b) là vị trí tín hiệu âm thanh phát đi.

Vì ba thiết bị ghi tín hiệu đặt tại ba vị trí O(0; 0), A(1; 0), B(1; 3) nhận tín hiệu từ H phát đi tại cùng một thời điểm nên HO = HA = HB.

Ta có: \(\overrightarrow {HO} = \left( { - a; - b} \right)\), \(\overrightarrow {HA} = \left( {1 - a; - b} \right)\), \(\overrightarrow {HC} = \left( {1 - a;3 - b} \right)\).

Do đó: \(HO = \sqrt {{{\left( { - a} \right)}^2} + \left( { - {b^2}} \right)} = \sqrt {{a^2} + {b^2}} \), \(HA = \sqrt {{{\left( {1 - a} \right)}^2} + {{\left( { - b} \right)}^2}} = \sqrt {{{\left( {a - 1} \right)}^2} + {b^2}} \),

\(HC = \sqrt {{{\left( {1 - a} \right)}^2} + {{\left( {3 - b} \right)}^2}} = \sqrt {{{\left( {a - 1} \right)}^2} + {{\left( {b - 3} \right)}^2}} \).

Vì HO = HA nên \(\sqrt {{a^2} + {b^2}} = \sqrt {{{\left( {a - 1} \right)}^2} + {b^2}} \) \( \Rightarrow {a^2} + {b^2} = {\left( {a - 1} \right)^2} + {b^2}\)

a2 = a2 – 2a + 1 2a = 1 a = \(\frac{1}{2}\).

Vì HA = HB nên \(\sqrt {{{\left( {a - 1} \right)}^2} + {b^2}} = \sqrt {{{\left( {a - 1} \right)}^2} + {{\left( {b - 3} \right)}^2}} \) \( \Rightarrow {\left( {a - 1} \right)^2} + {b^2} = {\left( {a - 1} \right)^2} + {\left( {b - 3} \right)^2}\)

b2 = b2 – 6b + 9 6b = 9 b = \(\frac{3}{2}\).

Thay a = \(\frac{1}{2}\) và b = \(\frac{3}{2}\) vào các phương trình ta thấy đều thỏa mãn.

Vậy vị trí phát tín hiệu âm thanh là tại điểm H có tọa độ \(\left( {\frac{1}{2};\,\frac{3}{2}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong mặt phẳng tọa độ, cho tam giác ABC có A(1; 0), B(3; 2) và C(– 2; – 1).

a) Tính độ dài đường cao kẻ từ đỉnh A của tam giác ABC.

b) Tính diện tích tam giác ABC.

Xem đáp án » 12/07/2024 26,750

Câu 2:

Trong mặt phẳng tọa độ Oxy, cho điểm A(0; – 2) và đường thẳng ∆: x + y – 4 = 0.

a) Tính khoảng cách từ điểm A đến đường thẳng ∆.

b) Viết phương trình đường thẳng a đi qua điểm M(– 1; 0) và song song với ∆.

c) Viết phương trình đường thẳng b đi qua điểm N(0; 3) và vuông góc với ∆.

Xem đáp án » 13/07/2024 18,012

Câu 3:

Nhân dịp nghỉ hè, Nam về quê ở với ông bà nội. Nhà ông bà nội có một ao cá có dạng hình chữ nhật ABCD với chiều dài AD = 15 m, chiều rộng AB = 12 m. Phần tam giác DEF là nơi ông bà nuôi vịt, AE = 5 m, CF = 6 m (H.7.11).

a) Chọn hệ trục tọa độ Oxy, có điểm O trùng với điểm B, các tia Ox, Oy tương ứng trùng với các tia BC, BA. Chọn 1 đơn vị độ dài trên mặt phẳng tọa độ tương ứng với 1 m trong thực tế. Hãy xác định tọa độ của các điểm A, B, C, D, E, F và viết phương trình đường thẳng EF.

b) Nam đứng ở vị trí B câu cá và có thể quăng lưỡi câu xa 10,7 m. Hỏi lưỡi câu có thể rơi vào nơi nuôi vịt hay không ?

Media VietJack

Xem đáp án » 13/07/2024 14,525

Câu 4:

Tính góc giữa hai đường thẳng \({\Delta _1}:\left\{ \begin{array}{l}x = 2 + t\\y = 1 - 2t\end{array} \right.\) và \({\Delta _2}:\left\{ \begin{array}{l}x = 1 + t'\\y = 5 + 3t'\end{array} \right.\).

Xem đáp án » 13/07/2024 8,251

Câu 5:

Trong mặt phẳng tọa độ, cho hai đường thẳng

1: x – 2y + 3 = 0,

2: 3x – y – 1 = 0.

a) Điểm M(1; 2) có thuộc cả hai đường thẳng nói trên hay không?

b) Giải hệ \(\left\{ \begin{array}{l}x - 2y + 3 = 0\\3x - y - 1 = 0\end{array} \right.\).

c) Chỉ ra mối quan hệ giữa tọa độ giao điểm của ∆1 và ∆2 với nghiệm của hệ phương trình trên.

Xem đáp án » 13/07/2024 4,802

Câu 6:

Tính góc giữa hai đường thẳng

1: x + 3y + 2 = 0 và ∆2: y = 3x + 1.

Xem đáp án » 13/07/2024 4,695

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store