Trong mặt phẳng tọa độ, một tín hiệu âm thanh phát đi từ một vị trí và được ba thiết bị ghi tín hiệu đặt tại ba vị trí O(0; 0), A(1; 0), B(1; 3) nhận được cùng một thời điểm. Hãy xác định vị trí phát tín hiệu âm thanh.
Quảng cáo
Trả lời:
Hướng dẫn giải
Gọi H(a; b) là vị trí tín hiệu âm thanh phát đi.
Vì ba thiết bị ghi tín hiệu đặt tại ba vị trí O(0; 0), A(1; 0), B(1; 3) nhận tín hiệu từ H phát đi tại cùng một thời điểm nên HO = HA = HB.
Ta có: \(\overrightarrow {HO} = \left( { - a; - b} \right)\), \(\overrightarrow {HA} = \left( {1 - a; - b} \right)\), \(\overrightarrow {HC} = \left( {1 - a;3 - b} \right)\).
Do đó: \(HO = \sqrt {{{\left( { - a} \right)}^2} + \left( { - {b^2}} \right)} = \sqrt {{a^2} + {b^2}} \), \(HA = \sqrt {{{\left( {1 - a} \right)}^2} + {{\left( { - b} \right)}^2}} = \sqrt {{{\left( {a - 1} \right)}^2} + {b^2}} \),
\(HC = \sqrt {{{\left( {1 - a} \right)}^2} + {{\left( {3 - b} \right)}^2}} = \sqrt {{{\left( {a - 1} \right)}^2} + {{\left( {b - 3} \right)}^2}} \).
Vì HO = HA nên \(\sqrt {{a^2} + {b^2}} = \sqrt {{{\left( {a - 1} \right)}^2} + {b^2}} \) \( \Rightarrow {a^2} + {b^2} = {\left( {a - 1} \right)^2} + {b^2}\)
⇔ a2 = a2 – 2a + 1 ⇔ 2a = 1 ⇔ a = \(\frac{1}{2}\).
Vì HA = HB nên \(\sqrt {{{\left( {a - 1} \right)}^2} + {b^2}} = \sqrt {{{\left( {a - 1} \right)}^2} + {{\left( {b - 3} \right)}^2}} \) \( \Rightarrow {\left( {a - 1} \right)^2} + {b^2} = {\left( {a - 1} \right)^2} + {\left( {b - 3} \right)^2}\)
⇔ b2 = b2 – 6b + 9 ⇔ 6b = 9 ⇔ b = \(\frac{3}{2}\).
Thay a = \(\frac{1}{2}\) và b = \(\frac{3}{2}\) vào các phương trình ta thấy đều thỏa mãn.
Vậy vị trí phát tín hiệu âm thanh là tại điểm H có tọa độ \(\left( {\frac{1}{2};\,\frac{3}{2}} \right)\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Độ dài đường cao kẻ từ đỉnh của tam giác ABC chính là khoảng cách từ điểm A đến đường thẳng BC.
Ta có: \(\overrightarrow {BC} = \left( { - 2 - 3; - 1 - 2} \right) = \left( { - 5; - 3} \right)\).
Chọn vectơ chỉ phương của đường thẳng BC là \(\overrightarrow u = - \overrightarrow {BC} = \left( {5;\,3} \right)\).
Suy ra vectơ pháp tuyến của đường thẳng BC là \(\overrightarrow n = \left( {3;\,\, - 5} \right)\).
Đường thẳng BC đi qua điểm B(3; 2) và có vectơ pháp tuyến \(\overrightarrow n = \left( {3;\,\, - 5} \right)\), do đó phương trình đường thẳng BC là: 3(x – 3) – 5(y – 2) = 0 hay 3x – 5y + 1 = 0.
Khi đó khoảng cách từ A đến BC là:
d(A, BC) = \(\frac{{\left| {3.1 - 5.0 + 1} \right|}}{{\sqrt {{3^2} + {5^2}} }} = \frac{4}{{\sqrt {34} }} = \frac{{2\sqrt {34} }}{{17}}\) .
Vậy độ dài đường cao kẻ từ đỉnh A của tam giác ABC là h = \(\frac{{2\sqrt {34} }}{{17}}\).
b) Ta có: BC = \(\left| {\overrightarrow {BC} } \right| = \sqrt {{{\left( { - 5} \right)}^2} + {{\left( { - 3} \right)}^2}} = \sqrt {34} \).
Diện tích tam giác ABC là:
S = \(\frac{1}{2}h.BC\)\( = \frac{1}{2}.\frac{{2\sqrt {34} }}{{17}}.\sqrt {34} = 2\) (đvdt).
Vậy diện tích tam giác ABC là 2 đvdt.
Lời giải
Hướng dẫn giải
a) Đặt hệ trục tọa độ như hình vẽ sau:

Vì B trùng với gốc tọa độ O nên B có tọa độ là (0; 0).
Vì ABCD là hình chữ nhật nên CD = AB = 12 m, BC = AD = 15 m.
Điểm A thuộc trục Oy và có AO = AB = 12 m nên A có tọa độ là (0; 12).
Điểm C thuộc trục Ox và có CO = CB = 15 m nên C có tọa độ là (15; 0).
Ta có: DC ⊥ Ox (do DC ⊥ BC), DA ⊥ Oy (do DA ⊥ AB) và DC = 12 m, DA = 15 m nên điểm D có tọa độ là (15; 12).
Từ E kẻ EH vuông góc với BC, H thuộc BC nên EH = AB = 12 m, lại có AE = 5 m, do đó điểm E có tọa độ là (5; 12).
Từ F kẻ FJ vuông góc với AB, J thuộc AB nên FJ = AD = 15 m, lại có CF = 6 m, do đó điểm F có tọa độ là (15; 6).
Vậy A(0; 12), B(0; 0), C(15; 0), D(15; 12), E(5; 12), F(15; 6).
Ta có: \[\overrightarrow {EF} = \left( {15 - 5;6 - 12} \right) = \left( {10; - 6} \right)\].
Chọn vectơ \(\overrightarrow u = \frac{1}{2}\overrightarrow {EF} = \left( {5; - 3} \right)\) làm vectơ chỉ phương của đường thẳng EF thì vectơ pháp tuyến của đường thẳng EF là \(\overrightarrow n = \left( {3;\,5} \right)\).
Đường thẳng EF đi qua điểm E(5; 12) và có một vectơ pháp tuyến là \(\overrightarrow n = \left( {3;\,5} \right)\), do đó phương trình đường thẳng EF là: 3(x – 5) + 5(y – 12) = 0 hay 3x + 5y – 75 = 0.
b) Áp dụng công thức tính khoảng cách, ta có khoảng cách từ B đến EF là:
\(d\left( {B,\,EF} \right) = \frac{{\left| {3.0 + 5.0 - 75} \right|}}{{\sqrt {{3^2} + {5^2}} }} = \frac{{75}}{{\sqrt {34} }}\)≈ 12,9 m.
Khoảng cách từ B đến EF là đường ngắn nhất từ B nơi Nam đứng đến EF, lưỡi câu có thể quăng xa 10,7 m và 10,7 m < 12,9 m nên lưỡi câu không thể rơi vào vị trí nuôi vịt.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.