Câu hỏi:

12/07/2024 4,579

Viết phương trình đường tròn (C) đi qua ba điểm M(4; – 5), N(2; – 1), P(3; – 8).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Media VietJack

Các đoạn thẳng MN, NP tương ứng có trung điểm là A(3; – 3), B\(\left( {\frac{5}{2};\,\,\frac{{ - 9}}{2}} \right)\). Đường thẳng trung trực d1 của đoạn thẳng MN đi qua điểm A(3; – 3) và có vectơ pháp tuyến \(\overrightarrow {MN} = \left( { - 2;\,4} \right)\).

Vì \(\overrightarrow {MN} = \left( { - 2;4} \right)\) cùng phương với \(\overrightarrow {{n_1}} = \left( {1;\, - 2} \right)\) nên d1 cũng nhận \(\overrightarrow {{n_1}} = \left( {1;\, - 2} \right)\) là vectơ pháp tuyến. Do đó, phương trình của d1 là: 1(x – 3) – 2(y + 3) = 0 hay x – 2y – 9 = 0.

Đường thẳng trung trực d2 của đoạn thẳng NP đi qua B\(\left( {\frac{5}{2};\,\,\frac{{ - 9}}{2}} \right)\) và có vectơ pháp tuyến \(\overrightarrow {NP} = \left( {1;\, - 7} \right)\), do đó phương trình d2 là: \(1\left( {x - \frac{5}{2}} \right) - 7\left( {y + \frac{9}{2}} \right) = 0\) hay x – 7y – 34 = 0.

Tâm I của đường tròn (C) cách đều ba điểm M, N, P nên I là giao điểm của d1 và d2.

Vậy tọa độ của I là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}x - 2y - 9 = 0\\x - 7y - 34 = 0\end{array} \right.\).

Suy ra I(– 1; – 5). Đường tròn (C) có bán kính là IM =\(\sqrt {{{\left( {4 - \left( { - 1} \right)} \right)}^2} + {{\left( { - 5 - \left( { - 5} \right)} \right)}^2}} = 5\).

Vậy phương trình của (C) là: (x + 1)2 + (y + 5)2 = 25.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Ta có: x2 + y2 + 2x – 4y + 4 = 0 x2 + y2 – 2 . (– 1) . x – 2 . 2 . y + 4 = 0.

Các hệ số: a = – 1, b = 2, c = 4.

Khi đó đường tròn (C) có tâm I(– 1; 2).

Do 02 + 22 + 2 . 0 – 4 . 2 + 4 = 0 nên điểm M(0; 2) thuộc (C).

Tiếp tuyến d của (C) tại điểm M(0; 2) có vectơ pháp tuyến \(\overrightarrow {IM} = \left( {0 + 1;\,2 - 2} \right) = \left( {1;0} \right)\), nên có phương trình d: 1(x – 0) + 0(y – 2) = 0 hay d: x = 0.

Lời giải

Hướng dẫn giải

a) Đường tròn có tâm I(– 2; 5) và bán kính R = 7 có phương trình là

(x – (–2))2 + (y – 5)2 = 72 hay (x + 2)2 + (y – 5)2 = 49.

b) Đường tròn có tâm I và đi qua điểm A nên bán kính đường tròn là IA.

Ta có: IA = \(\sqrt {{{\left( { - 2 - 1} \right)}^2} + {{\left( {2 - \left( { - 2} \right)} \right)}^2}} \)= 5.

Do đó phương trình đường tròn là: (x – 1)2 + (y – (– 2))2 = 52

Hay (x – 1)2 + (y + 2)2 = 25.

c) Đường tròn có đường kính AB thì tâm của đường tròn này là trung điểm của AB.

Tọa độ trung điểm I của AB là I\(\left( {\frac{{\left( { - 1} \right) + \left( { - 3} \right)}}{2};\frac{{\left( { - 3} \right) + 5}}{2}} \right)\) hay I(– 2; 1).

Ta có: AB = \(\sqrt {{{\left( { - 3 - \left( { - 1} \right)} \right)}^2} + \left( {5 - {{\left( { - 3} \right)}^2}} \right)} \) = \(2\sqrt {17} \).

Bán kính của đường tròn đường kính AB là R = AB2=2172=17.

Khi đó phương trình đường tròn đường kính AB là:

x22+y12=172 hay (x + 2)2 + (y – 1)2 = 17.

d) Đường tròn (C) có tâm I(1; 3) và tiếp xúc với đường thẳng ∆: x + 2y + 3 = 0 thì khoảng cách từ tâm I đến ∆ chính bằng bán kính của (C).

Ta có: R = d(I, ∆) = \(\frac{{\left| {1 + 2.3 + 3} \right|}}{{\sqrt {{1^2} + {2^2}} }} = \frac{{10}}{{\sqrt 5 }} = 2\sqrt 5 \).

Vậy phương trình đường tròn (C) là: x12+y32=252 hay (x – 1)2 + (y – 3)2 = 20.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay