Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Phép thử của bài toán là chọn ngẫu nhiên 6 số trong 45 số: 1; 2; 3; …; 45. Không gian mẫu Ω là tập hợp tất cả các tập con có 6 phần tử của tập {1; 2; 3; …; 45}.

Do đó số phần tử của không gian mẫu là n(Ω) = \(C_{45}^6\).

+ Gọi F là biến cố: “Bạn An trúng giải độc đắc”.

Ta có: F là tập hợp có duy nhất 1 phần tử là tập {5; 13; 20; 31; 32; 35}. Do đó, n(F) = 1.

Vậy xác suất để bạn An trúng giải độc đắc là \(P\left( F \right) = \frac{{n\left( F \right)}}{{n\left( \Omega \right)}} = \frac{1}{{C_{45}^6}} = \frac{1}{{8\,\,145\,\,060}}\).

+ Gọi G là biến cố: “Bạn An trúng giải nhất”.

Vì nếu bộ số của người chơi trùng với 5 số của bộ số trúng thưởng thì người chơi trúng giải nhất.

Do đó G là tập hợp tất cả các tập con gồm 6 phần tử của tập {1; 2; 3; …; 45} có tính chất: năm phần tử của nó thuộc tập {5; 13; 20; 31; 32; 35} và một phần tử còn lại không thuộc tập {5; 13; 20; 31; 32; 35}. Nghĩa là phần tử còn lại này phải thuộc tập {1; 2; 3; …; 45} \ {5; 13; 20; 31; 32; 35} (tập hợp này gồm 45 – 6 = 39 phần tử).

Mỗi phần tử của G được hình thành từ hai công đoạn.

Công đoạn 1. Chọn 5 phần tử trong tập {5; 13; 20; 31; 32; 35}, có \(C_6^5\) cách chọn.

Công đoạn 2. Chọn 1 phần tử trong 39 phần tử còn lại, có \(C_{39}^1\) cách chọn.

Theo quy tắc nhân, số phần tử của G là: n(G) = \(C_6^5.C_{39}^1 = 234\) (phần tử).

Vậy xác suất để bạn An trúng giải nhất là \(P\left( G \right) = \frac{{n\left( G \right)}}{{n\left( \Omega \right)}} = \frac{{234}}{{C_{45}^6}} = \frac{{39}}{{1\,\,357\,510}}\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Cách 1: Theo Luyện tập 3 trang 85 ta có:

n(Ω) = {GGG; GGT; GTG; GTT; TGG; TGT; TTG; TTT} và n(Ω) = 8.

a) Biến cố A: “Con đầu là gái”, do đó A = {GGG; GGT; GTG; GTT}. Suy ra n(A) = 4.

Vậy \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{4}{8} = \frac{1}{2}\).

b) Biến cố B: “Có ít nhất một người con trai”.

Suy ra biến cố \(\overline B \): “Không có người con trai nào”.

Khi không có người con trai nào, tức cả ba người con đều là gái, do đó \(\overline B \) = {GGG} nên \(n\left( {\overline B } \right) = 1\).

Do đó, \(P\left( {\overline B } \right) = \frac{{n\left( {\overline B } \right)}}{{n\left( \Omega \right)}} = \frac{1}{8}\).

Từ đó suy ra \(P\left( B \right) = 1 - P\left( {\overline B } \right) = 1 - \frac{1}{8} = \frac{7}{8}\).

Cách 2:

Mỗi người con sẽ là trai hoặc gái, nên 3 người con thì số khả năng xảy ra là: 2 . 2 . 2 = 8, hay n(Ω) = 8.

a) Con đầu là con gái vậy chỉ có 1 cách chọn.

Hai người con sau không phân biệt về giới tính nên có: 2 . 2 = 4 cách chọn.

Do đó, n(A) = 1 . 4 = 4.

Vậy \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{4}{8} = \frac{1}{2}\).

b) Biến cố B: “Có ít nhất một người con trai”.

Suy ra biến cố \(\overline B \): “Không có người con trai nào”.

Khi không có người con trai nào, tức cả ba người con đều là gái, nên \(n\left( {\overline B } \right) = 1\).

Do đó, \(P\left( {\overline B } \right) = \frac{{n\left( {\overline B } \right)}}{{n\left( \Omega \right)}} = \frac{1}{8}\).

Từ đó suy ra \(P\left( B \right) = 1 - P\left( {\overline B } \right) = 1 - \frac{1}{8} = \frac{7}{8}\).

Lời giải

Hướng dẫn giải

Hai con xúc xắc cân đối nên các kết quả xảy ra có thể đồng khả năng.

Gieo một con xúc xắc, các kết quả có thể xảy ra là 1, 2, 3, 4, 5, 6 chấm.

Vì gieo lần lượt hai con xúc xắc cân đối, nên theo quy tắc nhân, số phần tử của không gian mẫu là: n(Ω) = 6 . 6 = 36.

Gọi biến cố A: “Ít nhất một con xúc xắc xuất hiện mặt 6 chấm”.

Để ít nhất một con xúc xắc xuất hiện mặt 6 chấm thì có các khả năng là:

+ Trường hợp 1: một con 6 chấm, một con không phải 6 chấm, số khả năng: 1 . 5 . 2 = 10.

(Do gieo lần lượt nên các kết quả: 61; 62; 63; 64; 65; 16; 26; 36; 46; 56).

+ Trường hợp 2: cả hai con 6 chấm, số khả năng: 1.

Vì các trường hợp là rời nhau, nên theo quy tắc cộng, ta có: n(A) = 10 + 1 = 11.

Vậy \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{11}}{{36}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay