Câu hỏi:

26/06/2022 494

Giải bài toán trong tình huống mở đầu.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Phép thử của bài toán là chọn ngẫu nhiên 6 số trong 45 số: 1; 2; 3; …; 45. Không gian mẫu Ω là tập hợp tất cả các tập con có 6 phần tử của tập {1; 2; 3; …; 45}.

Do đó số phần tử của không gian mẫu là n(Ω) = \(C_{45}^6\).

+ Gọi F là biến cố: “Bạn An trúng giải độc đắc”.

Ta có: F là tập hợp có duy nhất 1 phần tử là tập {5; 13; 20; 31; 32; 35}. Do đó, n(F) = 1.

Vậy xác suất để bạn An trúng giải độc đắc là \(P\left( F \right) = \frac{{n\left( F \right)}}{{n\left( \Omega \right)}} = \frac{1}{{C_{45}^6}} = \frac{1}{{8\,\,145\,\,060}}\).

+ Gọi G là biến cố: “Bạn An trúng giải nhất”.

Vì nếu bộ số của người chơi trùng với 5 số của bộ số trúng thưởng thì người chơi trúng giải nhất.

Do đó G là tập hợp tất cả các tập con gồm 6 phần tử của tập {1; 2; 3; …; 45} có tính chất: năm phần tử của nó thuộc tập {5; 13; 20; 31; 32; 35} và một phần tử còn lại không thuộc tập {5; 13; 20; 31; 32; 35}. Nghĩa là phần tử còn lại này phải thuộc tập {1; 2; 3; …; 45} \ {5; 13; 20; 31; 32; 35} (tập hợp này gồm 45 – 6 = 39 phần tử).

Mỗi phần tử của G được hình thành từ hai công đoạn.

Công đoạn 1. Chọn 5 phần tử trong tập {5; 13; 20; 31; 32; 35}, có \(C_6^5\) cách chọn.

Công đoạn 2. Chọn 1 phần tử trong 39 phần tử còn lại, có \(C_{39}^1\) cách chọn.

Theo quy tắc nhân, số phần tử của G là: n(G) = \(C_6^5.C_{39}^1 = 234\) (phần tử).

Vậy xác suất để bạn An trúng giải nhất là \(P\left( G \right) = \frac{{n\left( G \right)}}{{n\left( \Omega \right)}} = \frac{{234}}{{C_{45}^6}} = \frac{{39}}{{1\,\,357\,510}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

B. Bài tập

Chọn ngẫu nhiên một gia đình có ba con và quan sát giới tính của ba người con này. Tính xác suất của các biến cố sau:

a) A: “Con đầu là gái”;

b) B: “Có ít nhất một người con trai”.

Xem đáp án » 11/07/2024 12,796

Câu 2:

Một chiếc hộp đựng 6 viên bi trắng, 4 viên bi đỏ và 2 viên bi đen. Chọn ngẫu nhiên ra 6 viên bi. Tính xác suất để trong 6 viên bi đó có 3 viên bi trắng, 2 viên bi đỏ và 1 viên bi đen.

Xem đáp án » 11/07/2024 11,155

Câu 3:

Gieo lần lượt hai con xúc xắc cân đối. Tính xác suất để ít nhất một con xúc xắc xuất hiện mặt 6 chấm.

Xem đáp án » 11/07/2024 9,119

Câu 4:

Gieo liên tiếp một con xúc xắc cân đối và một đồng xu cân đối.

a) Vẽ sơ đồ hình cây mô tả các phần tử của không gian mẫu.

b) Tính xác suất của các biến cố sau:

F: “Đồng xu xuất hiện mặt ngửa”;

G: “Đồng xu xuất hiện mặt sấp hoặc số chấm xuất hiện trên con xúc xắc là 5”. 

Xem đáp án » 11/07/2024 8,263

Câu 5:

Một tổ trong lớp 10B có 12 học sinh, trong đó có 7 học sinh nam và 5 học sinh nữ. Giáo viên chọn ngẫu nhiên 6 học sinh trong tổ để kiểm tra vở bài tập Toán. Tính xác suất để trong 6 học sinh được chọn số học sinh nữ bằng số học sinh nam.

Xem đáp án » 11/07/2024 7,862

Câu 6:

Một hộp đựng các tấm thẻ đánh số 10; 11; ....; 20. Rút ngẫu nhiên từ hộp hai tấm thẻ. Tính xác suất của các biến cố sau:

a) C: “Cả hai thẻ rút được đều mang số lẻ”;

b) D: “Cả hai thẻ rút được đều mang số chẵn”.

Xem đáp án » 11/07/2024 7,459

Câu 7:

Trong một cuộc tổng điều tra dân số, điều tra viên chọn ngẫu nhiên một gia đình có ba người con và quan tâm giới tính của ba người con này.

a) Vẽ sơ đồ hình cây để mô tả các phần tử của không gian mẫu.

b) Giả thiết rằng khả năng sinh con trai và khả năng sinh con gái là như nhau. Tính xác suất để gia đình đó có một con trai và hai con gái.

Xem đáp án » 11/07/2024 4,744

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store