Câu hỏi:

11/07/2024 9,747 Lưu

Trên một phố có hai quán ăn X, Y. Ba bạn Sơn, Hải, Văn mỗi người chọn ngẫu nhiên một quán ăn.

a) Vẽ sơ đồ hình cây mô tả các phần tử của không gian mẫu.

b) Tính xác suất của biến cố “Hai bạn vào quán X, bạn còn lại vào quán Y”.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

a) Theo bài ra ta vẽ được sơ đồ hình cây mô tả các phần tử của không gian mẫu như sau:

Media VietJack

Các kết quả có thể là: XXX; XXY; XYX; XYY; YXX; YXY; YYX; YYY.

Do đó, Ω = {XXX; XXY; XYX; XYY; YXX; YXY; YYX; YYY}.

Vậy n(Ω) = 8.

b) Gọi biến cố A: “Hai bạn vào quán X, bạn còn lại vào quán Y”.

Các kết quả thuận lợi cho biến cố A: XXY; XYX; YXX.

Do đó A = {XXY; XYX; YXX}.

 n(A) = 3.

Vậy \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{3}{8}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Cách 1: Theo Luyện tập 3 trang 85 ta có:

n(Ω) = {GGG; GGT; GTG; GTT; TGG; TGT; TTG; TTT} và n(Ω) = 8.

a) Biến cố A: “Con đầu là gái”, do đó A = {GGG; GGT; GTG; GTT}. Suy ra n(A) = 4.

Vậy \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{4}{8} = \frac{1}{2}\).

b) Biến cố B: “Có ít nhất một người con trai”.

Suy ra biến cố \(\overline B \): “Không có người con trai nào”.

Khi không có người con trai nào, tức cả ba người con đều là gái, do đó \(\overline B \) = {GGG} nên \(n\left( {\overline B } \right) = 1\).

Do đó, \(P\left( {\overline B } \right) = \frac{{n\left( {\overline B } \right)}}{{n\left( \Omega \right)}} = \frac{1}{8}\).

Từ đó suy ra \(P\left( B \right) = 1 - P\left( {\overline B } \right) = 1 - \frac{1}{8} = \frac{7}{8}\).

Cách 2:

Mỗi người con sẽ là trai hoặc gái, nên 3 người con thì số khả năng xảy ra là: 2 . 2 . 2 = 8, hay n(Ω) = 8.

a) Con đầu là con gái vậy chỉ có 1 cách chọn.

Hai người con sau không phân biệt về giới tính nên có: 2 . 2 = 4 cách chọn.

Do đó, n(A) = 1 . 4 = 4.

Vậy \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{4}{8} = \frac{1}{2}\).

b) Biến cố B: “Có ít nhất một người con trai”.

Suy ra biến cố \(\overline B \): “Không có người con trai nào”.

Khi không có người con trai nào, tức cả ba người con đều là gái, nên \(n\left( {\overline B } \right) = 1\).

Do đó, \(P\left( {\overline B } \right) = \frac{{n\left( {\overline B } \right)}}{{n\left( \Omega \right)}} = \frac{1}{8}\).

Từ đó suy ra \(P\left( B \right) = 1 - P\left( {\overline B } \right) = 1 - \frac{1}{8} = \frac{7}{8}\).

Lời giải

Hướng dẫn giải

Hai con xúc xắc cân đối nên các kết quả xảy ra có thể đồng khả năng.

Gieo một con xúc xắc, các kết quả có thể xảy ra là 1, 2, 3, 4, 5, 6 chấm.

Vì gieo lần lượt hai con xúc xắc cân đối, nên theo quy tắc nhân, số phần tử của không gian mẫu là: n(Ω) = 6 . 6 = 36.

Gọi biến cố A: “Ít nhất một con xúc xắc xuất hiện mặt 6 chấm”.

Để ít nhất một con xúc xắc xuất hiện mặt 6 chấm thì có các khả năng là:

+ Trường hợp 1: một con 6 chấm, một con không phải 6 chấm, số khả năng: 1 . 5 . 2 = 10.

(Do gieo lần lượt nên các kết quả: 61; 62; 63; 64; 65; 16; 26; 36; 46; 56).

+ Trường hợp 2: cả hai con 6 chấm, số khả năng: 1.

Vì các trường hợp là rời nhau, nên theo quy tắc cộng, ta có: n(A) = 10 + 1 = 11.

Vậy \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{11}}{{36}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP