Câu hỏi:

27/06/2022 202 Lưu

Trong mặt phẳng tọa độ Oxy, cho M, N, P lần lượt là điểm biểu diễn của các số phức \(2 + 3i\), \(1 - 2i\)\( - 3 + i\). Tọa độ điểm Q sao cho tứ giác MNPQ là hình bình hành là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Ta có \(M\left( {2;3} \right),N\left( {1; - 2} \right),P\left( { - 3;1} \right)\).

MNPQ là hình bình hành khi \(\overrightarrow {MN} = \overrightarrow {PQ} \Rightarrow \left\{ \begin{array}{l} - 1 = x + 3\\ - 5 = y - 1\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = - 4\\y = - 4\end{array} \right. \Rightarrow Q\left( { - 4; - 4} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án D

Đặt \(t = 2{\rm{x}} \Rightarrow dt = 2{\rm{dx}}\). Đổi cận \(x = 0 \Rightarrow t = 0,{\rm{ }}x = 3 \Rightarrow t = 6\).

\(\int\limits_0^3 {f\left( {2{\rm{x}}} \right)d{\rm{x}}} = \frac{1}{2}\int\limits_0^6 {f\left( t \right)dt} = \frac{1}{2}\int\limits_0^6 {f\left( x \right)d{\rm{x}}} = \frac{1}{2}.10 = 5\).

Lời giải

Đáp án A

Theo giả thiết ta có: \(\int\limits_{ - 2}^0 {\left| {f\left( x \right)} \right|d{\rm{x}}} = \int\limits_{ - 2}^0 { - f\left( x \right)d{\rm{x}}} = 1 \Rightarrow \int\limits_{ - 2}^0 {f\left( x \right)d{\rm{x}}} = - 1;{\rm{ }}\int\limits_0^3 {\left| {f\left( x \right)} \right|d{\rm{x}}} = \int\limits_0^3 {f\left( x \right)d{\rm{x}}} = 3\)

Do đó: \(\int\limits_{ - 2}^3 {f\left( x \right)d{\rm{x}}} = \int\limits_{ - 2}^0 {f\left( x \right)d{\rm{x}}} + \int\limits_0^3 {f\left( x \right)d{\rm{x}}} = - 1 + 3 = 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP