Câu hỏi:
27/06/2022 245Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đạo hàm \(f'\left( x \right) = {x^2}\left( {x - 2} \right)\left( {{x^2} - 6{\rm{x}} + m} \right)\) với mọi \(x \in \mathbb{R}\). Có bao nhiêu số nguyên m thuộc đoạn \(\left[ { - 2019;2019} \right]\) để hàm số \(g\left( x \right) = f\left( {1 - x} \right)\) nghịch biến trên khoảng \(\left( { - \infty ; - 1} \right)\)?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án B
Để \(g\left( x \right)\) nghịch biến trên \(\left( { - \infty ; - 1} \right)\) thì \(g'\left( x \right) \le 0{\rm{ }}\forall x \in \left( { - \infty ; - 1} \right)\)
\( \Leftrightarrow f'\left( {1 - x} \right){\left( {1 - x} \right)^\prime } \le 0{\rm{ }}\forall {\rm{x}} \in \left( { - \infty ; - 1} \right)\)
\( \Leftrightarrow - \left( {1 - {x^2}} \right)\left( { - 1 - x} \right)\left( {{x^2} + 4{\rm{x}} + m - 5} \right) \le 0{\rm{ }}\forall {\rm{x}} \in \left( { - \infty ; - 1} \right)\)
\( \Leftrightarrow \left( {x + 1} \right)\left( {{x^2} + 4{\rm{x}} + m - 5} \right) \le 0{\rm{ }}\forall {\rm{x}} \in \left( { - \infty ; - 1} \right)\)
\( \Leftrightarrow \left( {{x^2} + 4{\rm{x}} + m - 5} \right) \ge 0{\rm{ }}\forall {\rm{x}} \in \left( { - \infty ; - 1} \right)\)
\( \Leftrightarrow m \ge - {x^2} - 4{\rm{x}} + 5{\rm{ }}\forall {\rm{x}} \in \left( { - \infty ; - 1} \right)\)
\( \Leftrightarrow m \ge \max \left( { - {x^2} - 4x + 5} \right){\rm{ }}\forall {\rm{x}} \in \left( { - \infty ; - 1} \right)\)
\( \Leftrightarrow m \ge 9\)
Do m thuộc đoạn \(\left[ { - 2019;2019} \right]\) và m nhận giá trị nguyên nên sẽ có 2011 giá trị.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và \(\int\limits_0^6 {f\left( x \right)d{\rm{x}}} = 10\), thì \(\int\limits_0^3 {f\left( {2{\rm{x}}} \right)d{\rm{x}}} \) bằng
Câu 2:
Cho đồ thị hàm số \(y = f\left( x \right)\) như hình vẽ bên. Diện tích phần hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\) với trục Ox nằm phía trên và phía dưới trục Ox lần lượt là 3 và 1. Khi đó \(\int\limits_{ - 2}^3 {f\left( x \right)d{\rm{x}}} \) bằng
Câu 3:
Trong không gian Oxyz, mặt phẳng \(\left( P \right)\) đi qua điểm \(A\left( {1;0;2} \right)\) và vuông góc với đường thẳng \(d:\frac{x}{2} = \frac{{y - 1}}{{ - 1}} = \frac{{z + 2}}{3}\) có phương trình là
Câu 4:
Số nghiệm nguyên của bất phương trình \({\log _{\frac{1}{2}}}\left( {x - 3} \right) \ge {\log _{\frac{1}{2}}}4\) là
Câu 5:
Cho 10 điểm phân biệt trong đó không có 3 điểm nào thẳng hàng. Hỏi có bao nhiêu tam giác mà ba đỉnh của nó được chọn từ 10 điểm trên?
Câu 6:
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên bằng \(\sqrt 2 a\). Độ lớn của góc giữa đường thẳng SA và mặt phẳng đáy bằng
Câu 7:
Cho hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R}\) và có bảng xét dấu đạo hàm như sau
Hàm số đã cho đồng biến trên khoảng nào dưới đây
về câu hỏi!