Câu hỏi:

27/06/2022 213

Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy ABC là tam giác vuông tại A, \(AB = a\sqrt 3 ,BC = 2{\rm{a}}\), đường thẳng \(AC'\) tạo với mặt phẳng \(\left( {BCC'B'} \right)\) một góc \(30^\circ \). Diện tích của mặt cầu ngoại tiếp hình lăng trụ đã cho bằng

Đáp án chính xác

Sách mới 2k7: Sổ tay Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 30k).

Sổ tay Toán-lý-hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại A,  (ảnh 1)

Ta có: \(AC = \sqrt {B{C^2} - A{B^2}} = a\)

Gọi \(M,M'\) lần lượt là trung điểm các cạnh \(BC,B'C'\)O là trung điểm đoạn \(MM'\). Do M\(M'\) là tâm đường tròn ngoại tiếp đáy hình lăng trụ \(ABC.A'B'C'\) nên O là tâm mặt cầu ngoại tiếp hình lăng trụ \(ABC.A'B'C'\).

Gọi H là hình chiếu vuông góc của A lên cạnh BC khi đó \(\widehat {\left( {AC',(BCC'B')} \right)} = \widehat {AC'H} = 30^\circ \).

Ta có: \(AH = AC'.\sin 30^\circ = \frac{1}{2}AC' \Rightarrow AC' = 2HA\)\(AH = \frac{{AB.AC}}{{BC}} = \frac{{a\sqrt 3 }}{2}\).

Suy ra \(AC' = a\sqrt 3 \) do \(C'{A^2} = C'{C^2} + A{C^2} \Rightarrow C'C = \sqrt {C'{A^2} - A{C^2}} = a\sqrt 2 \).

Từ đó suy ra bán kính mặt cầu ngoại tiếp cần tìm là \(R = \frac{{a\sqrt 2 }}{2}\).

Vậy diện tích cần tìm là \(S = 2\pi {a^2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\)\(\int\limits_0^6 {f\left( x \right)d{\rm{x}}} = 10\), thì \(\int\limits_0^3 {f\left( {2{\rm{x}}} \right)d{\rm{x}}} \) bằng

Xem đáp án » 27/06/2022 9,785

Câu 2:

Cho đồ thị hàm số \(y = f\left( x \right)\) như hình vẽ bên. Diện tích phần hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\) với trục Ox nằm phía trên và phía dưới trục Ox lần lượt là 3 và 1. Khi đó \(\int\limits_{ - 2}^3 {f\left( x \right)d{\rm{x}}} \) bằng

Cho đồ thị hàm số y=f(x)  như hình vẽ bên. Diện tích phần hình phẳng giới hạn bởi đồ thị hàm số  (ảnh 1)

Xem đáp án » 27/06/2022 5,726

Câu 3:

Trong không gian Oxyz, mặt phẳng \(\left( P \right)\) đi qua điểm \(A\left( {1;0;2} \right)\) và vuông góc với đường thẳng \(d:\frac{x}{2} = \frac{{y - 1}}{{ - 1}} = \frac{{z + 2}}{3}\) có phương trình là

Xem đáp án » 27/06/2022 3,194

Câu 4:

Số nghiệm nguyên của bất phương trình \({\log _{\frac{1}{2}}}\left( {x - 3} \right) \ge {\log _{\frac{1}{2}}}4\)

Xem đáp án » 27/06/2022 2,235

Câu 5:

Cho 10 điểm phân biệt trong đó không có 3 điểm nào thẳng hàng. Hỏi có bao nhiêu tam giác mà ba đỉnh của nó được chọn từ 10 điểm trên?

Xem đáp án » 27/06/2022 2,214

Câu 6:

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên bằng \(\sqrt 2 a\). Độ lớn của góc giữa đường thẳng SA và mặt phẳng đáy bằng

Xem đáp án » 27/06/2022 1,776

Câu 7:

Cho hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R}\) và có bảng xét dấu đạo hàm như sau

Cho hàm số f(x)  xác định trên  R và có bảng xét dấu đạo hàm như sau. (ảnh 1)

Hàm số đã cho đồng biến trên khoảng nào dưới đây

Xem đáp án » 27/06/2022 1,416

Bình luận


Bình luận