Câu hỏi:
27/06/2022 247Cho đồ thị biểu diễn vận tốc của hai xe X và Y khởi hành cùng một lúc, bên cạnh nhau và trên cùng một con đường. Biết đồ thị biểu diễn vận tốc của xe X là đường gấp khúc OABD và đồ thị biểu diễn vận tốc của xe Y gồm 2 phần, trong hai giây đầu tiên đồ thị đó là một phần của đường parabol đi qua các điểm O, C và D, khoảng thời gian còn lại đồ thị là một đoạn thẳng song song với trục hoành. Hỏi sau khi đi được 5 giây khoảng cách giữa hai xe là bao nhiêu mét?
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án C
Quãng đường xe X đi được tính theo diện tích hình phẳng giới hạn bởi đường gấp khúc OABD và trục hoành.
Ta có \({S_X} = \frac{1}{2}2.3 + 2.3 + \frac{{3 + 5}}{2}.1 = 13\).
Phương trình parabol có dạng \(y = a{x^2} + bx\) (do đi qua gốc tọa độ).
Parabol đi qua các điểm \(\left( {2;5} \right)\) và \(\left( {5;5} \right)\) nên \(\left\{ \begin{array}{l}4{\rm{a}} + 2b = 5\\25{\rm{a}} + 5b = 5\end{array} \right. \Rightarrow a = - \frac{1}{2};b = \frac{7}{2}\).
Quãng đường xe Y đi được là \({S_Y} = \int\limits_0^2 {\left( { - \frac{1}{2}{x^2} + \frac{7}{2}x} \right)d{\rm{x}}} + 3.5 = \frac{{62}}{3}\).
Suy ra khoảng cách hai xe sau 5s là \(d = \left| {{S_X} - {S_Y}} \right| = \frac{{62}}{3} - 13 = \frac{{23}}{3}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và \(\int\limits_0^6 {f\left( x \right)d{\rm{x}}} = 10\), thì \(\int\limits_0^3 {f\left( {2{\rm{x}}} \right)d{\rm{x}}} \) bằng
Câu 2:
Cho đồ thị hàm số \(y = f\left( x \right)\) như hình vẽ bên. Diện tích phần hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\) với trục Ox nằm phía trên và phía dưới trục Ox lần lượt là 3 và 1. Khi đó \(\int\limits_{ - 2}^3 {f\left( x \right)d{\rm{x}}} \) bằng
Câu 3:
Trong không gian Oxyz, mặt phẳng \(\left( P \right)\) đi qua điểm \(A\left( {1;0;2} \right)\) và vuông góc với đường thẳng \(d:\frac{x}{2} = \frac{{y - 1}}{{ - 1}} = \frac{{z + 2}}{3}\) có phương trình là
Câu 4:
Cho 10 điểm phân biệt trong đó không có 3 điểm nào thẳng hàng. Hỏi có bao nhiêu tam giác mà ba đỉnh của nó được chọn từ 10 điểm trên?
Câu 5:
Số nghiệm nguyên của bất phương trình \({\log _{\frac{1}{2}}}\left( {x - 3} \right) \ge {\log _{\frac{1}{2}}}4\) là
Câu 6:
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên bằng \(\sqrt 2 a\). Độ lớn của góc giữa đường thẳng SA và mặt phẳng đáy bằng
Câu 7:
Cho hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R}\) và có bảng xét dấu đạo hàm như sau
Hàm số đã cho đồng biến trên khoảng nào dưới đây
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
30 đề thi THPT Quốc gia môn Toán năm 2022 có lời giải (đề 1)
44 bài tập Đạo hàm và khảo sát hàm số có lời giải
30 đề thi THPT Quốc gia môn Toán năm 2022 có lời giải (đề 23)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 5)
về câu hỏi!