Cho đồ thị biểu diễn vận tốc của hai xe X và Y khởi hành cùng một lúc, bên cạnh nhau và trên cùng một con đường. Biết đồ thị biểu diễn vận tốc của xe X là đường gấp khúc OABD và đồ thị biểu diễn vận tốc của xe Y gồm 2 phần, trong hai giây đầu tiên đồ thị đó là một phần của đường parabol đi qua các điểm O, C và D, khoảng thời gian còn lại đồ thị là một đoạn thẳng song song với trục hoành. Hỏi sau khi đi được 5 giây khoảng cách giữa hai xe là bao nhiêu mét?

Quảng cáo
Trả lời:
Đáp án C
Quãng đường xe X đi được tính theo diện tích hình phẳng giới hạn bởi đường gấp khúc OABD và trục hoành.
Ta có \({S_X} = \frac{1}{2}2.3 + 2.3 + \frac{{3 + 5}}{2}.1 = 13\).
Phương trình parabol có dạng \(y = a{x^2} + bx\) (do đi qua gốc tọa độ).
Parabol đi qua các điểm \(\left( {2;5} \right)\) và \(\left( {5;5} \right)\) nên \(\left\{ \begin{array}{l}4{\rm{a}} + 2b = 5\\25{\rm{a}} + 5b = 5\end{array} \right. \Rightarrow a = - \frac{1}{2};b = \frac{7}{2}\).
Quãng đường xe Y đi được là \({S_Y} = \int\limits_0^2 {\left( { - \frac{1}{2}{x^2} + \frac{7}{2}x} \right)d{\rm{x}}} + 3.5 = \frac{{62}}{3}\).
Suy ra khoảng cách hai xe sau 5s là \(d = \left| {{S_X} - {S_Y}} \right| = \frac{{62}}{3} - 13 = \frac{{23}}{3}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án D
Đặt \(t = 2{\rm{x}} \Rightarrow dt = 2{\rm{dx}}\). Đổi cận \(x = 0 \Rightarrow t = 0,{\rm{ }}x = 3 \Rightarrow t = 6\).
\(\int\limits_0^3 {f\left( {2{\rm{x}}} \right)d{\rm{x}}} = \frac{1}{2}\int\limits_0^6 {f\left( t \right)dt} = \frac{1}{2}\int\limits_0^6 {f\left( x \right)d{\rm{x}}} = \frac{1}{2}.10 = 5\).
Lời giải
Đáp án A
Theo giả thiết ta có: \(\int\limits_{ - 2}^0 {\left| {f\left( x \right)} \right|d{\rm{x}}} = \int\limits_{ - 2}^0 { - f\left( x \right)d{\rm{x}}} = 1 \Rightarrow \int\limits_{ - 2}^0 {f\left( x \right)d{\rm{x}}} = - 1;{\rm{ }}\int\limits_0^3 {\left| {f\left( x \right)} \right|d{\rm{x}}} = \int\limits_0^3 {f\left( x \right)d{\rm{x}}} = 3\)
Do đó: \(\int\limits_{ - 2}^3 {f\left( x \right)d{\rm{x}}} = \int\limits_{ - 2}^0 {f\left( x \right)d{\rm{x}}} + \int\limits_0^3 {f\left( x \right)d{\rm{x}}} = - 1 + 3 = 2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.