Câu hỏi:

27/06/2022 1,314 Lưu

Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( {1;2;1} \right),B\left( {3;2;3} \right)\) và mặt phẳng \(\left( P \right):x - y - 3 = 0\). Trong các mặt cầu đi qua hai điểm A, B và có tâm thuộc mặt phẳng \(\left( P \right),\left( S \right)\) là mặt cầu có bán kính nhỏ nhất. Tính bán kính của mặt cầu \(\left( S \right)\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Trung điểm của AB\(M\left( {2;2;2} \right)\) suy ra phương trình mặt phẳng trung trực của AB\(\left( Q \right):x + z - 4 = 0\).

Suy ra tâm mặt cầu thuộc \(\left( P \right) \cap \left( Q \right):\left\{ \begin{array}{l}x - y - 3 = 0\\x + z - 4 = 0\end{array} \right.\). Gọi \(I\left( {t;t - 3;4 - t} \right)\).

Khi đó \({R^2} = I{A^2} = {\left( {t - 1} \right)^2} + {\left( {t - 5} \right)^2} + {\left( {t - 3} \right)^2} = 3{t^2} - 18t + 35 \ge 8 \Rightarrow {R_{\min }} = 2\sqrt 2 \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án D

Đặt \(t = 2{\rm{x}} \Rightarrow dt = 2{\rm{dx}}\). Đổi cận \(x = 0 \Rightarrow t = 0,{\rm{ }}x = 3 \Rightarrow t = 6\).

\(\int\limits_0^3 {f\left( {2{\rm{x}}} \right)d{\rm{x}}} = \frac{1}{2}\int\limits_0^6 {f\left( t \right)dt} = \frac{1}{2}\int\limits_0^6 {f\left( x \right)d{\rm{x}}} = \frac{1}{2}.10 = 5\).

Lời giải

Đáp án A

Theo giả thiết ta có: \(\int\limits_{ - 2}^0 {\left| {f\left( x \right)} \right|d{\rm{x}}} = \int\limits_{ - 2}^0 { - f\left( x \right)d{\rm{x}}} = 1 \Rightarrow \int\limits_{ - 2}^0 {f\left( x \right)d{\rm{x}}} = - 1;{\rm{ }}\int\limits_0^3 {\left| {f\left( x \right)} \right|d{\rm{x}}} = \int\limits_0^3 {f\left( x \right)d{\rm{x}}} = 3\)

Do đó: \(\int\limits_{ - 2}^3 {f\left( x \right)d{\rm{x}}} = \int\limits_{ - 2}^0 {f\left( x \right)d{\rm{x}}} + \int\limits_0^3 {f\left( x \right)d{\rm{x}}} = - 1 + 3 = 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP