Câu hỏi:

27/06/2022 294 Lưu

Cho khối cầu \(\left( S \right)\) tâm I, bán kính R không đổi. Một khối trụ thay đổi có chiều cao h và bán kính đáy r nội tiếp khối cầu. Tính chiều cao h theo R sao cho thể tích của khối trụ lớn nhất.

Cho khối cầu (S)  tâm I, bán kính R không đổi. Một khối trụ thay đổi có chiều cao h  (ảnh 1)

A. \(h = \frac{{2R\sqrt 3 }}{3}\)                 

B. \(h = \frac{{R\sqrt 2 }}{2}\)

C. \(h = \frac{{R\sqrt 3 }}{3}\)                    
D. \(h = R\sqrt 2 \)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án A

Gọi r, h lần lượt là bán kính đáy và chiều cao của khối trụ.

Vì khối trụ nội tiếp khối cầu \( \Rightarrow {R^2} = {r^2} + {\left( {\frac{h}{2}} \right)^2} \Leftrightarrow {r^2} = {R^2} - \frac{{{h^2}}}{4}\).

Thể tích của khối trụ là \(V = \pi {r^2}h = \pi h\left( {{R^2} - \frac{{{h^2}}}{4}} \right) = \frac{\pi }{4}.h\left( {4{{\rm{R}}^2} - {h^2}} \right)\).

Xét hàm số \(f\left( h \right) = 4{{\rm{R}}^2}h - {h^3}\) với \(h \in \left( {0;2{\rm{R}}} \right)\), có \(f'\left( h \right) = 4{{\rm{R}}^2} - 3{h^2} = 0 \Leftrightarrow h = \frac{{2R}}{{\sqrt 3 }}\).

Lập bảng biến thiên, ta được \(f\left( h \right)\) đạt GTLN khi và chỉ khi \(h = \frac{{2{\rm{R}}\sqrt 3 }}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. 30                         
B. 20                         
C. 10                         
D. 5

Lời giải

Đáp án D

Đặt \(t = 2{\rm{x}} \Rightarrow dt = 2{\rm{dx}}\). Đổi cận \(x = 0 \Rightarrow t = 0,{\rm{ }}x = 3 \Rightarrow t = 6\).

\(\int\limits_0^3 {f\left( {2{\rm{x}}} \right)d{\rm{x}}} = \frac{1}{2}\int\limits_0^6 {f\left( t \right)dt} = \frac{1}{2}\int\limits_0^6 {f\left( x \right)d{\rm{x}}} = \frac{1}{2}.10 = 5\).

Lời giải

Đáp án A

Theo giả thiết ta có: \(\int\limits_{ - 2}^0 {\left| {f\left( x \right)} \right|d{\rm{x}}} = \int\limits_{ - 2}^0 { - f\left( x \right)d{\rm{x}}} = 1 \Rightarrow \int\limits_{ - 2}^0 {f\left( x \right)d{\rm{x}}} = - 1;{\rm{ }}\int\limits_0^3 {\left| {f\left( x \right)} \right|d{\rm{x}}} = \int\limits_0^3 {f\left( x \right)d{\rm{x}}} = 3\)

Do đó: \(\int\limits_{ - 2}^3 {f\left( x \right)d{\rm{x}}} = \int\limits_{ - 2}^0 {f\left( x \right)d{\rm{x}}} + \int\limits_0^3 {f\left( x \right)d{\rm{x}}} = - 1 + 3 = 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(2{\rm{x}} + y - 3{\rm{z}} + 8 = 0\)      
B. \(2{\rm{x}} - y + 3{\rm{z}} - 8 = 0\)    
C. \(2{\rm{x}} - y + 3z + 8 = 0\)                         
D. \(2x + y - 3{\rm{z}} - 8 = 0\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. 5                           
B. 6                           
C. 3                           
D. 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(45^\circ \)            
B. \(75^\circ \)            
C. \(30^\circ \)            
D. \(60^\circ \)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. 1                          
B. 0                          
C. 2                           
D. \( - 1\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP