Câu hỏi:
27/06/2022 221Cho khối cầu \(\left( S \right)\) tâm I, bán kính R không đổi. Một khối trụ thay đổi có chiều cao h và bán kính đáy r nội tiếp khối cầu. Tính chiều cao h theo R sao cho thể tích của khối trụ lớn nhất.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Đáp án A
Gọi r, h lần lượt là bán kính đáy và chiều cao của khối trụ.
Vì khối trụ nội tiếp khối cầu \( \Rightarrow {R^2} = {r^2} + {\left( {\frac{h}{2}} \right)^2} \Leftrightarrow {r^2} = {R^2} - \frac{{{h^2}}}{4}\).
Thể tích của khối trụ là \(V = \pi {r^2}h = \pi h\left( {{R^2} - \frac{{{h^2}}}{4}} \right) = \frac{\pi }{4}.h\left( {4{{\rm{R}}^2} - {h^2}} \right)\).
Xét hàm số \(f\left( h \right) = 4{{\rm{R}}^2}h - {h^3}\) với \(h \in \left( {0;2{\rm{R}}} \right)\), có \(f'\left( h \right) = 4{{\rm{R}}^2} - 3{h^2} = 0 \Leftrightarrow h = \frac{{2R}}{{\sqrt 3 }}\).
Lập bảng biến thiên, ta được \(f\left( h \right)\) đạt GTLN khi và chỉ khi \(h = \frac{{2{\rm{R}}\sqrt 3 }}{3}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và \(\int\limits_0^6 {f\left( x \right)d{\rm{x}}} = 10\), thì \(\int\limits_0^3 {f\left( {2{\rm{x}}} \right)d{\rm{x}}} \) bằng
Câu 2:
Cho đồ thị hàm số \(y = f\left( x \right)\) như hình vẽ bên. Diện tích phần hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\) với trục Ox nằm phía trên và phía dưới trục Ox lần lượt là 3 và 1. Khi đó \(\int\limits_{ - 2}^3 {f\left( x \right)d{\rm{x}}} \) bằng
Câu 3:
Trong không gian Oxyz, mặt phẳng \(\left( P \right)\) đi qua điểm \(A\left( {1;0;2} \right)\) và vuông góc với đường thẳng \(d:\frac{x}{2} = \frac{{y - 1}}{{ - 1}} = \frac{{z + 2}}{3}\) có phương trình là
Câu 4:
Cho 10 điểm phân biệt trong đó không có 3 điểm nào thẳng hàng. Hỏi có bao nhiêu tam giác mà ba đỉnh của nó được chọn từ 10 điểm trên?
Câu 5:
Số nghiệm nguyên của bất phương trình \({\log _{\frac{1}{2}}}\left( {x - 3} \right) \ge {\log _{\frac{1}{2}}}4\) là
Câu 6:
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên bằng \(\sqrt 2 a\). Độ lớn của góc giữa đường thẳng SA và mặt phẳng đáy bằng
Câu 7:
Cho hàm số \(f\left( x \right) = \frac{{\ln \left( {{x^2} + 1} \right)}}{x}\) thỏa mãn \(f'\left( 1 \right) = a\ln 2 + b\) với \(a,b \in \mathbb{Z}\). Giá trị của \(a + b\) bằng
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
50 bài tập Nguyên hàm, tích phân và ứng dụng có lời giải
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
50 bài tập Hình học không gian có lời giải
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
45 bài tập Xác suất có lời giải
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận