Cho hàm số \(y = f\left( x \right)\) thỏa mãn \({2020^{f\left( x \right)}} = x + \sqrt {{x^2} + 2020} {\rm{ }}\left( {\forall x \in \mathbb{R}} \right)\). Có bao nhiêu số nguyên m thỏa mãn \(f\left( {\log m} \right) < f\left( {{{\log }_m}2020} \right)\)?
Quảng cáo
Trả lời:
Đáp án D
Ta có: \({2020^{f\left( x \right)}} = x + \sqrt {{x^2} + 2020} {\rm{ }}\left( {\forall x \in \mathbb{R}} \right) \Rightarrow f\left( x \right) = {\log _{2020}}\left( {x + \sqrt {{x^2} + 2020} } \right)\)
Mặt khác \(f'\left( x \right) = \frac{{1 + \frac{x}{{\sqrt {{x^2} + 2020} }}}}{{x + \sqrt {{x^2} + 2020} }} = \frac{1}{{\sqrt {{x^2} + 2020} }} > 0{\rm{ }}\left( {\forall x \in \mathbb{R}} \right)\) nên hàm số \(f\left( x \right)\) đồng biến trên \(\mathbb{R}\) do đó \(f\left( {\log m} \right) < f\left( {{{\log }_m}2020} \right) \Leftrightarrow \log m < {\log _m}2020 \Leftrightarrow \log m < {\log _m}.20.\log 2020\)
Đặt \(t = \log m\) ta được \(t < \frac{{\log 2020}}{t} \Leftrightarrow \frac{{{t^2} - \log 2020}}{t} < 0 \Leftrightarrow \left[ \begin{array}{l}t < - \sqrt {\log 2020} \\0 < t < \sqrt {\log 2020} \end{array} \right.\).
Suy ra \(\left[ \begin{array}{l}\log m < - \sqrt {\log 2020} \\0 < \log m < \sqrt {\log 2020} \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}0 < m < 0,015...\\1 < m < 65,77\end{array} \right.\)
Kết hợp \(m \in \mathbb{Z} \Rightarrow m = \left\{ {2;3;4;...65} \right\}\) nên có 64 giá trị của tham số m.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án D
Đặt \(t = 2{\rm{x}} \Rightarrow dt = 2{\rm{dx}}\). Đổi cận \(x = 0 \Rightarrow t = 0,{\rm{ }}x = 3 \Rightarrow t = 6\).
\(\int\limits_0^3 {f\left( {2{\rm{x}}} \right)d{\rm{x}}} = \frac{1}{2}\int\limits_0^6 {f\left( t \right)dt} = \frac{1}{2}\int\limits_0^6 {f\left( x \right)d{\rm{x}}} = \frac{1}{2}.10 = 5\).
Lời giải
Đáp án A
Theo giả thiết ta có: \(\int\limits_{ - 2}^0 {\left| {f\left( x \right)} \right|d{\rm{x}}} = \int\limits_{ - 2}^0 { - f\left( x \right)d{\rm{x}}} = 1 \Rightarrow \int\limits_{ - 2}^0 {f\left( x \right)d{\rm{x}}} = - 1;{\rm{ }}\int\limits_0^3 {\left| {f\left( x \right)} \right|d{\rm{x}}} = \int\limits_0^3 {f\left( x \right)d{\rm{x}}} = 3\)
Do đó: \(\int\limits_{ - 2}^3 {f\left( x \right)d{\rm{x}}} = \int\limits_{ - 2}^0 {f\left( x \right)d{\rm{x}}} + \int\limits_0^3 {f\left( x \right)d{\rm{x}}} = - 1 + 3 = 2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.