Câu hỏi:

27/06/2022 301 Lưu

Cho hàm số \(y = f\left( x \right)\) thỏa mãn \({2020^{f\left( x \right)}} = x + \sqrt {{x^2} + 2020} {\rm{ }}\left( {\forall x \in \mathbb{R}} \right)\). Có bao nhiêu số nguyên m thỏa mãn \(f\left( {\log m} \right) < f\left( {{{\log }_m}2020} \right)\)?

A. 66                         
B. 65                         
C. 63                         
D. 64

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án D

Ta có: \({2020^{f\left( x \right)}} = x + \sqrt {{x^2} + 2020} {\rm{ }}\left( {\forall x \in \mathbb{R}} \right) \Rightarrow f\left( x \right) = {\log _{2020}}\left( {x + \sqrt {{x^2} + 2020} } \right)\)

Mặt khác \(f'\left( x \right) = \frac{{1 + \frac{x}{{\sqrt {{x^2} + 2020} }}}}{{x + \sqrt {{x^2} + 2020} }} = \frac{1}{{\sqrt {{x^2} + 2020} }} > 0{\rm{ }}\left( {\forall x \in \mathbb{R}} \right)\) nên hàm số \(f\left( x \right)\) đồng biến trên \(\mathbb{R}\) do đó \(f\left( {\log m} \right) < f\left( {{{\log }_m}2020} \right) \Leftrightarrow \log m < {\log _m}2020 \Leftrightarrow \log m < {\log _m}.20.\log 2020\)

Đặt \(t = \log m\) ta được \(t < \frac{{\log 2020}}{t} \Leftrightarrow \frac{{{t^2} - \log 2020}}{t} < 0 \Leftrightarrow \left[ \begin{array}{l}t < - \sqrt {\log 2020} \\0 < t < \sqrt {\log 2020} \end{array} \right.\).

Suy ra \(\left[ \begin{array}{l}\log m < - \sqrt {\log 2020} \\0 < \log m < \sqrt {\log 2020} \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}0 < m < 0,015...\\1 < m < 65,77\end{array} \right.\)

Kết hợp \(m \in \mathbb{Z} \Rightarrow m = \left\{ {2;3;4;...65} \right\}\) nên có 64 giá trị của tham số m.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. 30                         
B. 20                         
C. 10                         
D. 5

Lời giải

Đáp án D

Đặt \(t = 2{\rm{x}} \Rightarrow dt = 2{\rm{dx}}\). Đổi cận \(x = 0 \Rightarrow t = 0,{\rm{ }}x = 3 \Rightarrow t = 6\).

\(\int\limits_0^3 {f\left( {2{\rm{x}}} \right)d{\rm{x}}} = \frac{1}{2}\int\limits_0^6 {f\left( t \right)dt} = \frac{1}{2}\int\limits_0^6 {f\left( x \right)d{\rm{x}}} = \frac{1}{2}.10 = 5\).

Lời giải

Đáp án A

Theo giả thiết ta có: \(\int\limits_{ - 2}^0 {\left| {f\left( x \right)} \right|d{\rm{x}}} = \int\limits_{ - 2}^0 { - f\left( x \right)d{\rm{x}}} = 1 \Rightarrow \int\limits_{ - 2}^0 {f\left( x \right)d{\rm{x}}} = - 1;{\rm{ }}\int\limits_0^3 {\left| {f\left( x \right)} \right|d{\rm{x}}} = \int\limits_0^3 {f\left( x \right)d{\rm{x}}} = 3\)

Do đó: \(\int\limits_{ - 2}^3 {f\left( x \right)d{\rm{x}}} = \int\limits_{ - 2}^0 {f\left( x \right)d{\rm{x}}} + \int\limits_0^3 {f\left( x \right)d{\rm{x}}} = - 1 + 3 = 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(2{\rm{x}} + y - 3{\rm{z}} + 8 = 0\)      
B. \(2{\rm{x}} - y + 3{\rm{z}} - 8 = 0\)    
C. \(2{\rm{x}} - y + 3z + 8 = 0\)                         
D. \(2x + y - 3{\rm{z}} - 8 = 0\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. 5                           
B. 6                           
C. 3                           
D. 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(45^\circ \)            
B. \(75^\circ \)            
C. \(30^\circ \)            
D. \(60^\circ \)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. 1                          
B. 0                          
C. 2                           
D. \( - 1\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP