Câu hỏi:
27/06/2022 156Trong không gian Oxyz cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 3} \right)^2} = 27\). Gọi \(\left( \alpha \right)\) là mặt phẳng đi qua hai điểm \(A\left( {0;0; - 4} \right)\), \(B\left( {2;0;0} \right)\) và cắt \(\left( S \right)\) theo giao tuyến là đường tròn \(\left( C \right)\) sao cho khối nón có đỉnh là tâm của \(\left( S \right)\), đáy là hình tròn \(\left( C \right)\) có thể tích lớn nhất. Biết mặt phẳng \(\left( \alpha \right)\) có phương trình dạng \(ax + by - z + c = 0\), khi đó \(a - b + c\) bằng:
Sách mới 2k7: Sổ tay Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 30k).
Quảng cáo
Trả lời:
Đáp án D
Ta có mặt cầu \(\left( S \right)\) có tâm \(I\left( {1; - 2;3} \right)\) bán kính \(R = 3\sqrt 3 \)
Vì \(A \in \left( \alpha \right) \Rightarrow 4 + c = 0 \Leftrightarrow c = - 4\) và \(A,B \in \left( \alpha \right) \Rightarrow \overrightarrow {AB} .\overrightarrow {{n_\alpha }} = 0 \Leftrightarrow 2{\rm{a}} - 4 = 0 \Leftrightarrow a = 2\).
Suy ra \(d\left( {I,(\alpha )} \right) = \frac{{\left| {2b + 5} \right|}}{{\sqrt {{b^2} + 5} }}\)
Gọi r là bán kính đường tròn \(\left( C \right)\) ta có \({r^2} = {R^2} - {d^2}\left( {I,(\alpha )} \right) = 27 - {d^2}\) với \(0 < d < 3\sqrt 3 \).
Khi đó thể tích khối nón \(V = \frac{1}{3}\pi {r^2}d\) để V lớn nhất thì \(f\left( d \right) = {r^2}.d = \left( {27 - {d^2}} \right)d\) lớn nhất.
Xét hàm \(f\left( d \right) = 27{\rm{d}} - {d^3}\) với \(0 < d < 3\sqrt 3 \)
Ta có \(f'\left( d \right) = - 3{{\rm{d}}^2} + 27 = 0 \Leftrightarrow d = \pm 3\) suy ra \(\mathop {\max }\limits_{\left( {0;3\sqrt 3 } \right)} \left[ {f\left( d \right)} \right] = f\left( 3 \right) = 54\) đạt được khi
\(d = 3 \Leftrightarrow \frac{{\left| {2b + 5} \right|}}{{\sqrt {{b^2} + 5} }} = 3 \Leftrightarrow 5\left( {{b^2} - 4b + 4} \right) = 0 \Leftrightarrow b = 2\).
Vậy giá trị biểu thức \(a - b + c = - 4\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và \(\int\limits_0^6 {f\left( x \right)d{\rm{x}}} = 10\), thì \(\int\limits_0^3 {f\left( {2{\rm{x}}} \right)d{\rm{x}}} \) bằng
Câu 2:
Cho đồ thị hàm số \(y = f\left( x \right)\) như hình vẽ bên. Diện tích phần hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\) với trục Ox nằm phía trên và phía dưới trục Ox lần lượt là 3 và 1. Khi đó \(\int\limits_{ - 2}^3 {f\left( x \right)d{\rm{x}}} \) bằng
Câu 3:
Trong không gian Oxyz, mặt phẳng \(\left( P \right)\) đi qua điểm \(A\left( {1;0;2} \right)\) và vuông góc với đường thẳng \(d:\frac{x}{2} = \frac{{y - 1}}{{ - 1}} = \frac{{z + 2}}{3}\) có phương trình là
Câu 4:
Số nghiệm nguyên của bất phương trình \({\log _{\frac{1}{2}}}\left( {x - 3} \right) \ge {\log _{\frac{1}{2}}}4\) là
Câu 5:
Cho 10 điểm phân biệt trong đó không có 3 điểm nào thẳng hàng. Hỏi có bao nhiêu tam giác mà ba đỉnh của nó được chọn từ 10 điểm trên?
Câu 6:
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên bằng \(\sqrt 2 a\). Độ lớn của góc giữa đường thẳng SA và mặt phẳng đáy bằng
Câu 7:
Cho hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R}\) và có bảng xét dấu đạo hàm như sau
Hàm số đã cho đồng biến trên khoảng nào dưới đây
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
50 bài tập Nguyên hàm, tích phân và ứng dụng có lời giải
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
CÂU TRẮC NGHIỆM ĐÚNG SAI
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 3)
Đề minh họa THPT Quốc gia môn Toán năm 2023 có đáp án
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 5)
về câu hỏi!