Câu hỏi:

27/06/2022 3,844 Lưu

Trong không gian tọa độ Oxyz, cho mặt cầu \[\left( S \right):{\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 16\]. Mặt phẳng \[\left( P \right)\] thay đổi luôn đi qua điểm \[A\left( {2;1;9} \right)\] và tiếp xúc với mặt cầu \[\left( S \right)\]. Đặt M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của khoảng cách từ điểm O đến \[\left( P \right)\]. Giá trị M + m bằng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Ta có: \[\left( P \right):a\left( {x - 2} \right) + b\left( {y - 1} \right) + c\left( {z - 9} \right) = 0\;\left( {{a^2} + {b^2} + {c^2} > 0} \right)\].

Mặt khác  \[D\left( {I;\left( P \right)} \right) = 4 \Leftrightarrow \frac{{\left| {8c} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }} = 4 \Leftrightarrow \frac{{\left| {2c} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }} = 1\].

Do đó \[c \ne 0\] chọn \[c = 1 \Rightarrow {a^2} + {b^2} = 3\].

Đặt \[a = \sqrt 3 \sin t;\;b = \sqrt 3 \cos t \Rightarrow d\left( {O;\left( P \right)} \right) = \frac{{\left| {2a + b + 9} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }} = \frac{{\left| {2a + b + 9} \right|}}{2} = \frac{{\left| {2\sqrt 3 \sin t + \sqrt 3 \cos t + 9} \right|}}{2}\].

Mặt khác \[ - \sqrt {12 + 3} \le 2\sqrt 3 \sin t + \sqrt 3 \cos t \le \sqrt {12 + 3} \Rightarrow \frac{{9 - \sqrt {15} }}{2} \le {d_0} \le \frac{{9 + \sqrt {15} }}{2} \Rightarrow M + m = 9\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án D

Phương trình đã cho là phương trình của một mặt cầu

\[ \Leftrightarrow {\left( {m + 2} \right)^2} + {\left( {m + 1} \right)^2} - 3{m^2} + 5 > 0 \Leftrightarrow {m^2} - 2m - 10 < 0 \Leftrightarrow 1 - \sqrt {11} < m < 1 + \sqrt {11} \].

Do \[m \in \mathbb{Z}\] nên \[m \in \left\{ { - 2; - 1;0;1;2;3;4} \right\}\]. Vậy có 7 giá trị nguyên của m thỏa mãn yêu cầu bài toán.

Câu 2

Lời giải

Đáp án D

Phương pháp:

Đưa về cùng cơ số: \[{a^{f\left( x \right)}} = {a^{g\left( x \right)}} \Leftrightarrow f\left( x \right) = g\left( x \right)\;\left( {0 < a \ne 1} \right)\].

Cách giải:

Ta có \[{7^{2{x^2} + 5x + 4}} = 49 = {7^2} \Leftrightarrow 2{x^2} + 5x + 4 = 2 \Leftrightarrow \left[ \begin{array}{l}x = - \frac{1}{2}\\x = - 2\end{array} \right..\]

Vậy tổng các nghiệm của phương trình là \[ - \frac{1}{2} - 2 = - \frac{5}{2}.\]

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP