Câu hỏi:

27/06/2022 419 Lưu

Số nghiệm của phương trình \[{\log _2}\left( {\frac{{{{5.2}^x} - 8}}{{{2^x} + 2}}} \right) = 3 - x\] là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

\({\log _2}\left( {\frac{{{{5.2}^x} - 8}}{{{2^x} + 2}}} \right) = 3 - x \Leftrightarrow \frac{{{{5.2}^x} - 8}}{{{2^x} + 2}} = {2^{3 - x}} \Leftrightarrow {5.2^x} - 8 = {2^{3 - x}}.\left( {{2^x} + 2} \right) \Leftrightarrow {5.2^x} - {2^{4 - x}} - 16 = 0\) (*)

Đặt \({2^x} = t\), đk \(t > 0\) khi đó \({2^{ - x}} = \frac{1}{t}\). Phương trình (*) tương đương với

\(5t - \frac{{16}}{t} - 16 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 4\\t = - \frac{4}{5} \Leftrightarrow t = 4\end{array} \right.\) (loại \(t = - \frac{4}{5}\)\(t > 0\)).

Với \(t = 4 \Rightarrow x = 2\). Vậy phương trình đã cho có 1 nghiệm duy nhất.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án D

Đường thẳng d có một VTCP là \(\overrightarrow u = \left( { - 1;2;1} \right)\).

Câu 2

Lời giải

Đáp án D

Tập xác định: \(D = \mathbb{R}\).

\(f'\left( x \right) = \frac{{2{\rm{x}}}}{{\left( {{x^2} + 1} \right)\ln 2}} \Rightarrow f'\left( 1 \right) = \frac{{2.1}}{{\left( {{1^2} + 1} \right)\ln 2}} = \frac{1}{{\ln 2}}\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP