Giá trị nhỏ nhất của hàm số \[y = {x^4} - 8{x^2} + 18\] trên đoạn \[\left[ { - 1;3} \right]\] bằng
Quảng cáo
Trả lời:
Đáp án A
Hàm số đã xác định và liên tục trên \(\left[ { - 1;3} \right]\).
Ta có \(\left\{ \begin{array}{l}x \in \left( { - 1;3} \right)\\y' = 4{{\rm{x}}^3} - 16{\rm{x}} = 4{\rm{x}}\left( {{x^2} - 4} \right) = 0\end{array} \right. \Rightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\)
Tính \(y\left( { - 1} \right) = 11;{\rm{ y}}\left( 3 \right) = 27;{\rm{ y}}\left( 0 \right) = 18;{\rm{ y}}\left( 2 \right) = 2\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án D
Đường thẳng d có một VTCP là \(\overrightarrow u = \left( { - 1;2;1} \right)\).
Lời giải
Đáp án D
Tập xác định: \(D = \mathbb{R}\).
\(f'\left( x \right) = \frac{{2{\rm{x}}}}{{\left( {{x^2} + 1} \right)\ln 2}} \Rightarrow f'\left( 1 \right) = \frac{{2.1}}{{\left( {{1^2} + 1} \right)\ln 2}} = \frac{1}{{\ln 2}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.