Câu hỏi:

27/06/2022 223 Lưu

Gọi \[{z_1}\], \[{z_2}\] là hai nghiệm phức của phương trình \[3{z^2} - z + 2 = 0\]. Tính \[T = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Ta có \(3{{\rm{z}}^2} - z + 2 = 0 \Leftrightarrow \left[ \begin{array}{l}{z_1} = \frac{{1 - i\sqrt {23} }}{6} \Rightarrow \left| {{z_1}} \right| = \frac{{\sqrt 6 }}{3}\\{z_2} = \frac{{1 + i\sqrt {23} }}{6} \Rightarrow \left| {{z_2}} \right| = \frac{{\sqrt 6 }}{3}\end{array} \right. \Rightarrow T = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2} = \frac{2}{3} + \frac{2}{3} = \frac{4}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án D

Đường thẳng d có một VTCP là \(\overrightarrow u = \left( { - 1;2;1} \right)\).

Câu 2

Lời giải

Đáp án D

Tập xác định: \(D = \mathbb{R}\).

\(f'\left( x \right) = \frac{{2{\rm{x}}}}{{\left( {{x^2} + 1} \right)\ln 2}} \Rightarrow f'\left( 1 \right) = \frac{{2.1}}{{\left( {{1^2} + 1} \right)\ln 2}} = \frac{1}{{\ln 2}}\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP