Câu hỏi:

27/06/2022 285 Lưu

Trong không gian với hệ toạ độ Oxyz, cho điểm \[M\left( {1; - 3;4} \right)\], đường thẳng \[d:\frac{{x + 2}}{3} = \frac{{y - 5}}{{ - 5}} = \frac{{z - 2}}{{ - 1}}\] và mặt phẳng (P): \[2x + z - 2 = 0\]. Viết phương trình đường thẳng Δ qua M vuông góc với d và song song với (P).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Từ \(\left( P \right)\) có véctơ pháp tuyến \(\overrightarrow a = \left( {2;0;1} \right)\).

Từ đường thẳng d có vectơ chỉ phương \(\overrightarrow b = \left( {3; - 5; - 1} \right)\).

Gọi vectơ chỉ phương của đường thẳng \(\Delta \)\(\overrightarrow u \).

Ta có \(\left\{ \begin{array}{l}\overrightarrow u \bot \overrightarrow a \\\overrightarrow u \bot \overrightarrow b \end{array} \right. \Rightarrow \overrightarrow u = \left[ {\overrightarrow a ,\overrightarrow b } \right] = \left( {5;5; - 10} \right)\). Chọn \(\overrightarrow u = \left( {1;1; - 2} \right)\).

Phương trình đường thẳng \(\Delta \)\(\frac{{x - 1}}{1} = \frac{{y + 3}}{1} = \frac{{z - 4}}{{ - 2}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án D

Đường thẳng d có một VTCP là \(\overrightarrow u = \left( { - 1;2;1} \right)\).

Câu 2

Lời giải

Đáp án D

Tập xác định: \(D = \mathbb{R}\).

\(f'\left( x \right) = \frac{{2{\rm{x}}}}{{\left( {{x^2} + 1} \right)\ln 2}} \Rightarrow f'\left( 1 \right) = \frac{{2.1}}{{\left( {{1^2} + 1} \right)\ln 2}} = \frac{1}{{\ln 2}}\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP