Câu hỏi:
28/06/2022 222Cho đồ thị \[\left( C \right):y = {x^3} - 3{x^2}.\] Có bao nhiêu số nguyên \[b \in \left( { - 10;10} \right)\] để có đúng một tiếp tuyến của (C) đi qua điểm \[B\left( {0;b} \right)?\]
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Đáp án D
Phương trình tiếp tuyến của \(\left( C \right)\) tại \(M\left( {{x_0};x_0^3 - 3{\rm{x}}_0^2} \right)\) có dạng: \(y = \left( {3{\rm{x}}_0^2 - 6{{\rm{x}}_0}} \right)\left( {x - {x_0}} \right) + x_0^3 - 3{\rm{x}}_0^2\)
Do tiếp tuyến đi qua điểm \(\left( {0;b} \right) \Rightarrow b = \left( {3{\rm{x}}_0^2 - 6{{\rm{x}}_0}} \right)\left( { - {x_0}} \right) + x_0^3 - 3{\rm{x}}_0^2 = - 2{\rm{x}}_0^3 + 3{\rm{x}}_0^2\)
Để có đúng một tiếp tuyến của \(\left( C \right)\) đi qua \(B\left( {0;b} \right)\) thì phương trình \(b = - 2{\rm{x}}_0^3 + 3{\rm{x}}_0^2\) có duy nhất một nghiệm. Xét hàm số \(y = - 2{{\rm{x}}^3} + 3{{\rm{x}}^2} \Rightarrow y' = - 6{{\rm{x}}^2} + 6{\rm{x}} = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0 \Rightarrow y = 0\\x = 1 \Rightarrow y = 1\end{array} \right.\).
Dựa vào đồ thị hàm số suy ra PT có 1 nghiệm khi \(\left[ \begin{array}{l}b > 1\\b < 0\end{array} \right.\).
Với \(b \in \left( { - 10;10} \right)\) có 17 giá trị nguyên của m thỏa mãn yêu cầu bài toán.
Đã bán 187
Đã bán 189
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian Oxyz, đường thẳng \[d:\left\{ {\begin{array}{*{20}{l}}{x = 2 - t}\\{y = 1 + 2t}\\{z = 3 + t}\end{array}} \right.\] có một vectơ chỉ phương là
Câu 2:
Cho hàm số \[f\left( x \right) = {\log _2}\left( {{x^2} + 1} \right)\], tính \[f'\left( 1 \right)\].
Câu 3:
Cho hàm số f(x) liên tục trên \[\mathbb{R}\] và \[\int\limits_0^2 {\left( {f\left( x \right) + 3{x^2}} \right){\rm{d}}x} = 10\]. Tính \[\int\limits_0^2 {f(x){\rm{d}}x} \].
Câu 4:
Cho hàm số \[f\left( x \right) = \frac{{\left( {m + 1} \right)x + 4}}{{x + 2m}}\] (m là tham số thực). Có bao nhiêu giá trị nguyên của m để hàm số đã cho nghịch biến trên khoảng \[\left( {0; + \infty } \right)\]?
Câu 5:
Tính diện tích hình phẳng giới hạn bởi đồ thị các hàm số \[y = - {x^2} + 2x\] và \[y = - 3x.\]
Câu 6:
Số đường tiệm cận của đồ thị hàm số \[y = \frac{{{x^2} - x + 1}}{{{x^2} - x - 2}}\] là
Câu 7:
Trong không gian với hệ trục tọa độ Oxyz, cho điểm \[M\left( { - 3;3; - 3} \right)\] thuộc mặt phẳng \[\left( \alpha \right):2x - - 2y + z + 15 = 0\] và mặt cầu \[\left( S \right):{(x - 2)^2} + {(y - 3)^2} + {(z - 5)^2} = 100\]. Đường thẳng Δ qua M, nằm trên mặt phẳng (α) cắt (S) tại A, B sao cho độ dài AB lớn nhất. Viết phương trình đường thẳng Δ.
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
45 bài tập Xác suất có lời giải
50 bài tập Nguyên hàm, tích phân và ứng dụng có lời giải
50 bài tập Hình học không gian có lời giải
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận